Skip to main content Accessibility help
×
Home

Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics

  • R.K. Vasudevan (a1), S. Jesse (a2), Y. Kim (a2), A. Kumar (a2) and S.V. Kalinin (a2)...

Abstract

Piezoresponse force microscopy (PFM) has emerged as a powerful tool to characterize piezoelectric, ferroelectric, and multiferroic materials on the nanometer level. Much of the driving force for the broad adoption of PFM has been the intense research into piezoelectric properties of thin films, nanoparticles, and nanowires of materials as dissimilar as perovskites, nitrides, and polymers. Recent recognition of limitations of single-frequency PFM, notably topography-related cross-talk, has led to development of novel solutions such band-excitation (BE) methods. In parallel, the need for quantitative probing of polarization dynamics has led to emergence of complex time- and voltage spectroscopies, often based on acquisition and analysis of multidimensional datasets. In this perspective, we discuss the recent developments in multidimensional PFM, and offer several examples of spectroscopic techniques that provide new insight into polarization dynamics in ferroelectrics and multiferroics. We further discuss potential extension of PFM for probing ionic phenomena in energy generation and storage materials and devices.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics
      Available formats
      ×

Copyright

Corresponding author

*Address all correspondence to R.K. Vasudevan and S.V. Kalinin at ramav@student.unsw.edu.au and sergei2@ornl.gov

References

Hide All
1.Scott, J.F. and Paz de Araujo, C.A.: Ferroelectric memories. Science 246, 1400 (1989).
2.Zheng, Y., Ni, G.-X., Toh, C.-T., Zeng, M.-G., Chen, S.-T., Yao, K., and Ozyilmaz, B.: Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).
3.Fu, W., Xu, Z., Bai, X., Gu, C., and Wang, E.: Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9, 921 (2009).
4.Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J.: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238 (1997).
5.Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421 (2009).
6.Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthelemy, A., and Bibes, M.: Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81 (2009).
7.Polla, D.L.: Microelectromechanical systems based on ferroelectric thin films. Microelectron. Eng. 29, 51 (1995).
8.Karami, M.A. and Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012).
9.Gael, S., Sebastien, P., and Daniel, G.: Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17, 015012 (2008).
10.Bernstein, J.J., Finberg, S.L., Houston, K., Niles, L.C., Chen, H.D., Cross, L.E., Li, K.K., and Udayakumar, K.: Micromachined high frequency ferroelectric sonar transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960 (1997).
11.Foster, F.S., Harasiewicz, K.A., and Sherar, M.D.: A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1363 (2000).
12.Pramanick, A., Damjanovic, D., Daniels, J.E., Nino, J.C., and Jones, J.L.: Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293 (2011).
13.Sluka, T., Tagantsev, A.K., Damjanovic, D., Gureev, M., and Setter, N.: Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Comm. 3, 748 (2012).
14.Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D., and Damjanovic, D.: Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 49 (2007).
15.Xu, F., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z.L., and Hemker, K.J.: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336 (2001).
16.Pertsev, N.A. and Emelyanov, A.Y.: Domain-wall contribution to the piezoelectric response of epitaxial ferroelectric thin films. Appl. Phys. Lett. 71, 3646 (1997).
17.Avrami, M.: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).
18.Ishibashi, Y. and Takagi, Y.: Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506 (1971).
19.So, Y.W., Kim, D.J., Noh, T.W., Yoon, J.-G., and Song, T.K.: Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005).
20.Tagantsev, A.K., Stolichnov, I., Setter, N., Cross, J.S., and Tsukada, M.: Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).
21.Wu, A., Vilarinho, P.M., Wu, D., and Gruverman, A.: Abnormal domain switching in Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 93, 262906 (2008).
22.Yang, T.J., Gopalan, V., Swart, P.J., and Mohideen, U.: Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82, 4106 (1999).
23.Agronin, A., Rosenwaks, Y., and Rosenman, G.: Direct observation of pinning centers in ferroelectrics. Appl. Phys. Lett. 88, 072911 (2006).
24.Nambu, S. and Sagala, D.A.: Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838 (1994).
25.Rayleigh, L.: XXV. Notes on electricity and magnetism – III. On the behaviour of iron and steel under the operation of feeble magnetic forces. Philos. Mag. Ser. 5 23, 225 (1887).
26.Tybell, T., Paruch, P., Giamarchi, T., and Triscone, J.-M.: Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).
27.Paruch, P., Giamarchi, T., and Triscone, J.M.: Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).
28.Kim, D.J., Jo, J.Y., Kim, T.H., Yang, S.M., Chen, B., Kim, Y.S., and Noh, T.W.: Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).
29.Giamarchi, T., Kolton, A.B., and Rosso, A.: Dynamics of disordered elastic systems, In Jamming, Yielding, and Irreversible Deformation in Condensed Matter, edited by Miguel, M.C. and Rubí, J.M. (Springer Verlag, Berlin and Heidelberg, Germany, 2006), pp. 91108.
30.Keys, A.S., Abate, A.R., Glotzer, S.C., and Durian, D.J.: Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260 (2007).
31.Guillon, O., Thiebaud, F., and Perreux, D.: Tensile fracture of soft and hard PZT. Int. J. Fract. 117, 235 (2002).
32.Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).
33.Gruverman, A., Auciello, O., and Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).
34.Kalinin, S.V., Morozovska, A.N., Chen, L.-Q., and Rodriguez, B.J.: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).
35.Abplanalp, M., Eng, L.M., and Günter, P.: Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A Mater. Sci. Process. 66, S231 (1998).
36.Gruverman, A., Wu, D., Fan, H.J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008).
37.Ganpule, C.S., Nagarajan, V., Hill, B.K., Roytburd, A.L., Williams, E.D., Ramesh, R., Alpay, S.P., Roelofs, A., Waser, R., and Eng, L.M.: Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477 (2002).
38.Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., and Sternberg, A.: Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86, 202907 (2005).
39.Desmarais, J., Ihlefeld, J.F., Heeg, T., Schubert, J., Schlom, D.G., and Huey, B.D.: Mapping and statistics of ferroelectric domain boundary angles and types. Appl. Phys. Lett. 99, 162902 (2011).
40.Catalan, G., Bea, H., Fusil, S., Bibes, M., Paruch, P., Barthelemy, A., and Scott, J.F.: Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008).
41.Catalan, G. and Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).
42.Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.H., Rother, A., Hawkridge, M.E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S.V., Gemming, S., Wang, F., Catalan, G., Scott, J.F., Spaldin, N.A., Orenstein, J., and Ramesh, R.: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009).
43.Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngailis, J., Auciello, O., and Ramesh, R.: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43 (2003).
44.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).
45.Martin, L.W., Chu, Y.-H., Holcomb, M.B., Huijben, M., Yu, P., Han, S.-J., Lee, D., Wang, S.X., and Ramesh, R.: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).
46.Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).
47.Salje, E.K.H.: Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940 (2010).
48.Sharma, P., Reece, T.J., Ducharme, S., and Gruverman, A.: High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett. 11, 1970 (2011).
49.Nonnenmann, S.S., Leaffer, O.D., Gallo, E.M., Coster, M.T., and Spanier, J.E.: Finite curvature-mediated ferroelectricity. Nano Lett. 10, 542 (2010).
50.Rodriguez, B.J., Jesse, S., Alexe, M., and Kalinin, S.V.: Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Adv. Mater. 20, 109 (2008).
51.Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).
52.Kikukawa, A., Hosaka, S., and Imura, R.: Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 66, 3510 (1995).
53.Nonnenmacher, M., Oboyle, M., and Wickramasinghe, H.: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991).
54.Nonnenmacher, M. and Wickramasinghe, H.: Scanning probe microscopy of thermal conductivity and subsurface properties. Appl. Phys. Lett. 61, 168 (1992).
55.Kim, Y., Bae, C., Ryu, K., Ko, H., Kim, Y.K., Hong, S., and Shin, H.: Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Appl. Phys. Lett. 94, 032907 (2009).
56.Balke, N., Winchester, B., Ren, W., Chu, Y.H., Morozovska, A.N., Eliseev, E.A., Huijben, M., Vasudevan, R.K., Maksymovych, P., Britson, J., Jesse, S., Kornev, I., Ramesh, R., Bellaiche, L., Chen, L.Q., and Kalinin, S.V.: Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81 (2012).
57.Liu, X., Terabe, K., Nakamura, M., Takekawa, S., and Kitamura, K.: Nanoscale chemical etching of near-stoichiometric lithium tantalate. J. Appl. Phys. 97, 064308 (2005).
58.Dunn, S., Tiwari, D., Jones, P.M., and Gallardo, D.E.: Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J. Mater. Chem. 17, 4460 (2007).
59.Hanson, J.N., Rodriguez, B.J., Nemanich, R.J., and Gruverman, A.: Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction. Nanotechnology 17, 4946 (2006).
60.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Ferris, J.H., Zhang, Q., and Dunn, S.: Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett. 2, 589 (2002).
61.Kalinin, S.V., Bonnell, D.A., Alvarez, T., Lei, X., Hu, Z., Shao, R., and Ferris, J.H.: Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).
62.Ferris, J.H., Li, D.B., Kalinin, S.V., and Bonnell, D.A.: Nanoscale domain patterning of lead zirconate titanate materials using electron beams. Appl. Phys. Lett. 84, 774 (2004).
63.Roelofs, A., Bottger, U., Waser, R., Schlaphof, F., Trogisch, S., and Eng, L.M.: Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl. Phys. Lett. 77, 3444 (2000).
64.Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., and Cross, J.S.: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005).
65.Rodriguez, B.J., Jesse, S., Baddorf, A.P., and Kalinin, S.V.: High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. Phys. Rev. Lett. 96, 237602 (2006).
66.Balke, N., Gajek, M., Tagantsev, A.K., Martin, L.W., Chu, Y.-H., Ramesh, R., and Kalinin, S.V.: Direct observation of capacitor switching using planar electrodes. Adv. Funct. Mater. 20, 3466 (2010).
67.You, L., Liang, E., Guo, R., Wu, D., Yao, K., Chen, L., and Wang, J.: Polarization switching in quasiplanar BiFeO3 capacitors. Appl. Phys. Lett. 97, 062910 (2010).
68.Gruverman, A. and Kalinin, S.V.: Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107 (2006).
69.Kalinin, S.V., Rar, A., and Jesse, S.: A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226 (2006).
70.Elisabeth, S.: Piezoresponse force microscopy (PFM). J. Phys. D: Appl. Phys. 44, 464003 (2011).
71.Kholkin, A., Kalinin, S., Roelofs, A., and Gruverman, A.: Review of ferroelectric domain imaging by piezoresponse force microscopy, In Electrical and Electromechanical Phenomena at the Nanoscale, edited by Kalinin, S.V. and Gruverman, A. (Springer Science, 1, New York, 2007), p. 173.
72.Jungk, T., Hoffmann, A., and Soergel, E.: Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006).
73.Guo, S., Ovchinnikov, O.S., Curtis, M.E., Johnson, M.B., Jesse, S., and Kalinin, S.V.: Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J. Appl. Phys. 108, 084103 (2010).
74.Jesse, S. and Kalinin, S.V.: Band excitation in scanning probe microscopy: sines of change. J. Phys. D: Appl. Phys. 44, 464006 (2011).
75.Proksch, R. and Kalinin, S.V.: Energy dissipation measurements in frequency-modulated scanning probe microscopy. Nanotechnology 21, 455705 (2010).
76.Jesse, S., Guo, S., Kumar, A., Rodriguez, B.J., Proksch, R., and Kalinin, S.V.: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).
77.Kos, A.B. and Hurley, D.C.: Nanomechanical mapping with resonance tracking scanned probe microscope. Meas. Sci. Technol. 19, 015504 (2008).
78.Brian, J.R., Clint, C., Sergei, V.K., and Roger, P.: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).
79.Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., and Rodriguez, B.J.: The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).
80.Jesse, S., Kumar, A., Kalinin, S.V., Gannepali, A., and Proksch, R.: Band excitation scanning probe microscopies. Microsc. Today 18, 34 (2010).
81.Kim, Y., Kumar, A., Tselev, A., Kravchenko, I.I., Han, H., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M., Kalinin, S.V., and Jesse, S.: Nonlinear phenomena in multiferroic nanocapacitors: Joule heating and electromechanical effects. ACS Nano 5, 9104 (2011).
82.Jesse, S., Mirman, B., and Kalinin, S.V.: Resonance enhancement in piezoresponse force microscopy: mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).
83.Kalinin, S.V., Jesse, S., and Proksch, R.: Information acquisition and processing in scanning probe microscopy. R&D Mag. 50, 20 (2008).
84.Jesse, S. and Kalinin, S.V.: Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009).
85.Nikiforov, M., Reukov, V., Thompson, G., Vertegel, A., Guo, S., Kalinin, S., and Jesse, S.: Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20, 405708 (2009).
86.Nikiforov, M., Thompson, G., Reukov, V., Jesse, S., Guo, S., Rodriguez, B., Seal, K., Vertegel, A., and Kalinin, S.: Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. ACS Nano 4, 689 (2010).
87.Jesse, S., Guo, S., Kumar, A., Rodriguez, B., Proksch, R., and Kalinin, S.V.: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).
88.Jesse, S., Baddorf, A.P., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).
89.Jesse, S., Lee, H.N., and Kalinin, S.V.: Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).
90.Rodriguez, B.J., Jesse, S., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., and Kalinin, S.V.: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).
91.Jesse, S., Rodriguez, B.J., Choudhury, S., Baddorf, A.P., Vrejoiu, I., Hesse, D., Alexe, M., Eliseev, E.A., Morozovska, A.N., Zhang, J., Chen, L.-Q., and Kalinin, S.V.: Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209 (2008).
92.Tan, Z., Roytburd, A.L., Levin, I., Seal, K., Rodriguez, B.J., Jesse, S., Kalinin, S., and Baddorf, A.: Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3–CoFe2O4 epitaxial films. Appl. Phys. Lett. 93, 074101 (2008).
93.Bintachitt, P., Trolier-McKinstry, S., Seal, K., Jesse, S., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl. Phys. Lett. 94, 042906 (2009).
94.Rodriguez, B.J., Choudhary, S., Chu, Y.H., Bhattacharyya, A., Jesse, S., Seal, K., Baddorf, A.P., Ramesh, R., Chen, L.-Q., and Kalinin, S.V.: Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in Bismuth ferrite. Adv. Funct. Mater. 19, 2053 (2009).
95.Seal, K., Jesse, S., Nikiforov, M., Kalinin, S.V., Fujii, I., Bintachitt, P., and Trolier-McKinstry, S.: Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. Phys. Rev. Lett. 103, 57601 (2009).
96.Wicks, S., Seal, K., Jesse, S., Anbusathaiah, V., Leach, S., Edwin Garcia, R., Kalinin, S.V., and Nagarajan, V.: Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Mater. 58, 67 (2010).
97.Rodriguez, B.J., Jesse, S., Bokov, A.A., Ye, Z.G., and Kalinin, S.V.: Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Appl. Phys. Lett. 95, 092904 (2009).
98.Rodriguez, B.J., Jesse, S., Morozovska, A.N., Svechnikov, S.V., Kiselev, D.A., Kholkin, A.L., Bokov, A.A., Ye, Z.G., and Kalinin, S.V.: Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. J. Appl. Phys. 108, 042006 (2010).
99.Rodriguez, B.J., Jesse, S., Kim, J., Ducharme, S., and Kalinin, S.V.: Local probing of relaxation time distributions in ferroelectric polymer nanomesas: time-resolved piezoresponse force spectroscopy and spectroscopic imaging. Appl. Phys. Lett. 92, 232903 (2008).
100.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Morozovska, A.N., Bokov, A.A., and Ye, Z.G.: Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. 95, 142902 (2009).
101.Kalinin, S.V., Rodriguez, B.J., Budai, J.D., Jesse, S., Morozovska, A.N., Bokov, A.A., and Ye, Z.G.: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81, 064107 (2010).
102.Bintachitt, P., Jesse, S., Damjanovic, D., Han, Y., Reaney, I.M., Trolier-McKinstry, S., and Kalinin, S.V.: Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Natl. Acad. Sci. U.S.A. 107, 7219 (2010).
103.Griggio, F., Jesse, S., Kumar, A., Marincel, D.M., Tinberg, D.S., Kalinin, S.V., and Trolier-McKinstry, S.: Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Appl. Phys. Lett. 98, 212901 (2011).
104.Jesse, S., Maksymovych, P., and Kalinin, S.V.: Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Appl. Phys. Lett. 93, 112903 (2008).
105.Maksymovych, P., Balke, N., Jesse, S., Huijben, M., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J. Mater. Sci. 44, 5095 (2009).
106.Anbusathaiah, V., Jesse, S., Arredondo, M.A., Kartawidjaja, F.C., Ovchinnikov, O.S., Wang, J., Kalinin, S.V., and Nagarajan, V.: Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater. 58, 5316 (2010).
107.Balke, N., Jesse, S., Morozovska, A., Eliseev, E., Chung, D., Garcia, R.E., Dudney, N.J., and Kalinin, S.V.: Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials. Nat. Nanotechnol. 5, 749 (2010).
108.McLachlan, M.A., McComb, D.W., Ryan, M.P., Morozovska, A.N., Eliseev, E.A., Payzant, E.A., Jesse, S., Seal, K., Baddorf, A.P., and Kalinin, S.V.: Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT. Adv. Funct. Mater. 21, 941 (2011).
109.Kumar, A., Ovchinnikov, O., Guo, S., Griggio, F., Jesse, S., Trolier-McKinstry, S., and Kalinin, S.V.: Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Phys. Rev. B 84, 024203 (2011).
110.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., and Kalinin, S.V.: Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420 (2010).
111.Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., and Kalinin, S.V.: Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution. J. Electrochem. Soc. 158, A982 (2011).
112.Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., and Kalinin, S.V.: Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano 5, 9682 (2011).
113.Ovchinnikov, O., Jesse, S., Guo, S., Seal, K., Bintachitt, P., Fujii, I., Trolier-McKinstry, S., and Kalinin, S.V.: Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Appl. Phys. Lett. 96, 112906 (2010).
114.Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Ivanov, I.N., Dudney, N.J., and Kalinin, S.V.: Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4, 7349 (2010).
115.Vasudevan, R.K., Liu, Y., Li, J., Liang, W.-I., Kumar, A., Jesse, S., Chen, Y.-C., Chu, Y.-H., Nagarajan, V., and Kalinin, S.V.: Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett. 11, 3346 (2011).
116.Arruda, T.M., Kumar, A., Kalinin, S.V., and Jesse, S.: Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett. 11, 4161 (2011).
117.Kumar, A., Ovchinnikov, O.S., Funakubo, H., Jesse, S., and Kalinin, S.V.: Real-space mapping of dynamic phenomena during hysteresis loop measurements: dynamic switching spectroscopy piezoresponse force microscopy. Appl. Phys. Lett. 98, 202903 (2011).
118.Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., and Jesse, S.: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707 (2011).
119.Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Ramesh, R., and Kalinin, S.V.: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868 (2009).
120.Damjanovic, D.: Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric–ferroelastic domain walls. Phys. Rev. B 55, R649 (1997).
121.Damjanovic, D.: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).
122.Néel, L.: Theory of Rayleigh's Laws of magnetization. Cahiers Phys. 12, 1 (1942).
123.Kronmüller, H.: Statistical theory of Rayleigh's Law. Physik 30, 9 (1970).
124.Kronmüller, H.: Theory of Rayleigh's Law in magnetically multiaxial and uniaxial crystals. J. Phys. Colloque C1 32, 390 (1971).
125.Preisach, F.: On the magnetic after effects. Z. Phys. A Hadrons Nuclei 94, 277 (1935).
126.Ge, P. and Jouaneh, M.: Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng. 20, 99 (1997).
127.Kim, Y., Kumar, A., Ovchinnikov, O., Jesse, S., Han, H., Pantel, D., Vrejoiu, I., Lee, W., Hesse, D., Alexe, M., and Kalinin, S.V.: First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. ACS Nano 6, 491 (2011).
128.Bouwmeester, H., Kruidhof, H., and Burggraaf, A.: Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 72, 185 (1994).
129.Vugmeister, B.E.: Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics. Phys. Rev. B 73, 174117 (2006).
130.Kalinin, S.V., Jesse, S., Liu, W., and Balandin, A.A.: Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 88, 153902 (2006).
131.Lu, H., Bark, C.W., Esque de los Ojos, D., Alcala, J., Eom, C.B., Catalan, G., and Gruverman, A.: Mechanical writing of ferroelectric polarization. Science 336, 59 (2012).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed