Skip to main content Accessibility help

Solution-based synthesis of carbon–hematite composite thin films for high-performance supercapacitor applications

  • Jinzhan Su (a1), Shangpu Liu (a1), Jian Wang (a1), Cong Liu (a1), Yufeng Li (a1) and Dongyang Wu (a1)...


Supercapacitor has received intense interest due to its high-charge/discharge rate and high-power density. C/Fe2O3 layer with different C/Fe ratios were synthesized by a solution-based approach for supercapacitor application. The influence of synthesis conditions on their electrochemical performances was investigated. Cobalt was added into C/Fe2O3 and significant improved its performance. The optimal C/Fe2O3 sample gives a high specific capacitance of 85.3 F/g and the addition of Co3O4 further increase the capacitance of obtained C/Fe2O3/Co3O4 to 144.4 F/g at 5 A/g. This work demonstrates an efficient supercapacitor application of low-cost metal oxides and facile solution-based synthesis approach.


Corresponding author

Address all correspondence to Jinzhan Su at


Hide All
1. Su, J. and Vayssieres, L.: A place in the sun for artificial photosynthesis? ACS Energy Lett. 1, 121 (2016).
2. Gallo, A., Simões-Moreira, J., Costa, H., Santos, M., and dos Santos, E.M.: Energy storage in the energy transition context: a technology review. Renew. Sustain. Energy Rev. 65, 800 (2016).
3. Wang, G., Zhang, L., and Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).
4. Gamby, J., Taberna, P., Simon, P., Fauvarque, J., and Chesneau, M.: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).
5. Lin, T., Chen, I.-W., Liu, F., Yang, C., Bi, H., Xu, F., and Huang, F.: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508 (2015).
6. Kim, C.H., Wee, J.-H., Kim, Y.A., Yang, K.S., and Yang, C.-M.: Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. J. Mater. Chem. A 4, 4763 (2016).
7. Shao, Y., El-Kady, M.F., Wang, L.J., Zhang, Q., Li, Y., Wang, H., Mousavi, M.F., and Kaner, R.B.: Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639 (2015).
8. Zeng, Y., Yu, M., Meng, Y., Fang, P., Lu, X., and Tong, Y.: Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 1601053 (2016). doi: 10.1002/aenm.201601053.
9. Xia, C., Chen, W., Wang, X., Hedhili, M.N., Wei, N., and Alshareef, H.N.: Highly stable supercapacitors with conducting polymer core–shell electrodes for energy storage applications. Adv. Energy Mater. 5, 1401805 (2015).
10. Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., and Lou, X.W.D.: Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166 (2012).
11. Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P., Ebrahimi, M., Mai, W., Wong, C.P., and Wang, Z.L.: Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731 (2014).
12. Deng, J., Kang, L., Bai, G., Li, Y., Li, P., Liu, X., Yang, Y., Gao, F., and Liang, W.: Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127 (2014).
13. Binitha, G., Soumya, M., Madhavan, A.A., Praveen, P., Balakrishnan, A., Subramanian, K., Reddy, M., Nair, S.V., Nair, A.S., and Sivakumar, N.: Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1, 11698 (2013).
14. Shivakumara, S., Penki, T.R., and Munichandraiah, N.: High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 131, 100 (2014).
15. Lorkit, P., Panapoy, M., and Ksapabutr, B.: Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process. Energy Proc. 56, 466 (2014).
16. Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N.: Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72 (2013).
17. Liao, Q., Li, N., Jin, S., Yang, G., and Wang, C.: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310 (2015).
18. Gu, S., Lou, Z., Li, L., Chen, Z., Ma, X., and Shen, G.: Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 9, 424 (2016).
19. Liu, L., Lang, J., Zhang, P., Hu, B., and Yan, X.: Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335 (2016).
20. Liu, H., Zhang, J., Xu, D., Huang, L., Tan, S., and Mai, W.: Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 19, 135 (2015).
21. Liu, T.-C., Pell, W., and Conway, B.: Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim. Acta 44, 2829 (1999).
22. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., and Gruner, G.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).
23. Reddy, M., Yu, T., Sow, C.-H., Shen, Z.X., Lim, C.T., Subba Rao, G., and Chowdari, B.: α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).
24. Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., and Ruoff, R.S.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011).
25. Balbuena, J., Carraro, G., Cruz, M., Gasparotto, A., Maccato, C., Pastor, A., Sada, C., Barreca, D., and Sánchez, L.: Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites. RSC Adv. 6, 74878 (2016).
26. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., and Thommes, M.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).
27. Li, Q., Li, K., Sun, C., and Li, Y.: An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 611, 43 (2007).
28. Nie, G., Lu, X., Lei, J., Jiang, Z., and Wang, C.: Electrospun V2O5-doped α-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. J. Mater. Chem. A 2, 15495 (2014).
29. Zhang, B., Li, W., Sun, J., He, G., Zou, R., Hu, J., and Chen, Z.: NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Mater. Lett. 114, 40 (2014).
30. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maragno, C., and Tondello, E.: Hybrid chemical vapor deposition/sol–gel route in the preparation of nanophasic LaCoO3 films. Chem. Mater. 17, 427 (2005).
31. Wang, X., Chen, X., Gao, L., Zheng, H., Zhang, Z., and Qian, Y.: One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 (2004).
32. Jimenez, V., Fernandez, A., Espinos, J., and González-Elipe, A.: The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 71, 61 (1995).
Type Description Title
Supplementary materials

Su supplementary material
Figures S1-S8

 Word (1.3 MB)
1.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed