Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T17:49:44.306Z Has data issue: false hasContentIssue false

Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films

Published online by Cambridge University Press:  13 July 2017

Baoming Wang
Affiliation:
Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA
M. A. Haque*
Affiliation:
Mechanical and Nuclear Engineering, Penn State University, University Park, PA 16802, USA
Vikas Tomar
Affiliation:
School of Aeronautics & Astronautics, Purdue University, West Lafayette, IN 47907, USA
Khalid Hattar
Affiliation:
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185, USA
*
Address all correspondence to M. A. Haque at mah37@psu.edu
Get access

Abstract

Zirconium thin films were irradiated at room temperature with an 800 keV Zr+ beam using a 6 MV HVE Tandem accelerator to 1.36 displacement per atom damage. Freestanding tensile specimens, 100 nm thick and 10 nm grain size, were tested in situ inside a transmission electron microscope. Significant grain growth (>300%), texture evolution, and displacement damage defects were observed. Stress–strain profiles were mostly linear elastic below 20 nm grain size, but above this limit, the samples demonstrated yielding and strain hardening. Experimental results support the hypothesis that grain boundaries in nanocrystalline metals act as very effective defect sinks.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zinkle, S.J. and Was, G.S.: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).Google Scholar
2.Yan, C., Wang, R., Wang, Y., Wang, X., and Bai, G.: Effects of ion irradiation on microstructure and properties of zirconium alloys—a review. Nucl. Eng. Technol. 47, 323 (2015).Google Scholar
3.Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin Heidelberg, 2007).Google Scholar
4.Dayal, P., Bhattacharyya, D., Mook, W.M., Fu, E.G., Wang, Y.Q., Carr, D.G., Anderoglu, O., Mara, N.A., Misra, A., Harrison, R.P., and Edwards, L.: Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys. J. Nucl. Mater. 438, 108 (2013).Google Scholar
5.Sarkar, A., Kumar, A., Mukherjee, S., Sharma, S.K., Dutta, D., Pujari, P.K., Agarwal, A., Gupta, S.K., Singh, P., and Chakravartty, J.K.: Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2. J. Nucl. Mater. 479, 524 (2016).Google Scholar
6.Liu, W., Ji, Y., Tan, P., Zang, H., He, C., Yun, D., Zhang, C., and Yang, Z.: Irradiation induced microstructure evolution in nanostructured materials: a review. Materials 9, 105 (2016).Google Scholar
7.Beyerlein, I.J., Caro, A., Demkowicz, M.J., Mara, N.A., Misra, A., and Uberuaga, B.P.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).Google Scholar
8.Cheng, G.M., Xu, W.Z., Wang, Y.Q., Misra, A., and Zhu, Y.T.: Grain size effect on radiation tolerance of nanocrystalline Mo. Scr. Mater. 123, 90 (2016).Google Scholar
9.Argon, A.S. and Yip, S.: The strongest size. Philos. Mag. Lett. 86, 713 (2006).Google Scholar
10.Idrees, Y., Yao, Z., Kirk, M.A., and Daymond, M.R.: In situ study of defect accumulation in zirconium under heavy ion irradiation. J. Nucl. Mater. 433, 95 (2013).Google Scholar
11.Hengstler-Eger, R.M., Baldo, P., Beck, L., Dorner, J., Ertl, K., Hoffmann, P.B., Hugenschmidt, C., Kirk, M.A., Petry, W., Pikart, P., and Rempel, A.: Heavy ion irradiation induced dislocation loops in AREVA's M5® alloy. J. Nucl. Mater. 423, 170 (2012).Google Scholar
12.Yamada, S. and Kameyama, T.: Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation. J. Nucl. Mater. 422, 167 (2012).Google Scholar
13.Kumar, S. and Haque, M.A.: Fracture testing of nanoscale thin films inside the transmission electron microscope. Int. J. Appl. Mech. 2, 745 (2010).Google Scholar
14.Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268, 1818 (2010).Google Scholar
15.Bufford, D.C., Abdeljawad, F.F., Foiles, S.M., and Hattar, K.: Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling. Appl. Phys. Lett. 107, 191901 (2015).Google Scholar
16.Motta, A., Kaoumi, D., and Birtcher, R.: Grain growth in nanocrystalline metal thin films under in situ ion-beam irradiation. J. ASTM Int. 4, 1 (2007).Google Scholar
17.Zhang, Y., Edmondson, P.D., Varga, T., Moll, S., Namavar, F., Lan, C., and Weber, W.J.: Structural modification of nanocrystalline ceria by ion beams. PCCP 13, 11946 (2011).Google Scholar
18.Muntifering, B., Dingreville, R., Hattar, K., and Qu, J.: Electron beam effects during in-situ annealing of self-ion irradiated nanocrystalline nickel. MRS Proc. 1809, 13 (2015).Google Scholar
19.Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 5611 (1998).Google Scholar
20.Hahn, E.N. and Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng.: A 646, 101 (2015).Google Scholar
21.Wang, B., Tomar, V., and Haque, A.: In-situ TEM mechanical testing of nanocrystalline zirconium thin films. Mater. Lett. 152, 105 (2015).Google Scholar