Skip to main content Accessibility help
×
Home

Selective immobilization of bacterial light-harvesting proteins and their photoelectric responses

  • Rei Furukawa (a1), Masaharu Kondo (a2), Shunsuke Yajima (a2), Kaori Harada (a2), Kenji V.P. Nagashima (a3), Morio Nagata (a4), Kouji Iida (a5), Takehisa Dewa (a2) and Mamoru Nango (a2) (a6)...

Abstract

With the aim of understanding the excitation energy transfer mechanism in natural photosynthetic membranes, light-harvesting (LH)2 and LH1-reaction center, which are pigment-protein complexes separated from Rhodobacter sphaeroides, were aligned on a planar electrode surface in stripe patterns at 5 µm intervals. Observation of the absorption spectrum and fluorescence microphotographs revealed selective immobilization and conservation of the pigments. Photocurrent signals were obtained when the electrode was illuminated at either 880 or 800 nm. The fabricated structure was confirmed to function as a natural photosynthetic membrane with the highest photocurrent signal being obtained when using a co-immobilized substrate under excitation at 800 nm.

Copyright

Corresponding author

Address all correspondence to Rei Furukawa at furukawa@ee.uec.ac.jp

References

Hide All
1.Ke, B.: Photosynthesis (Kluwer Academic, Norwell, MA, 2011) p. 1.
2.Karrasch, S., Bullough, P.A., and Ghosh, R.: The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 14, 631 (1995).
3.Jungas, C., Ranck, J.L., Rigaud, J.L., Joliot, P., and Vermeglio, A.: Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J. 18, 534 (1999).
4.Siebert, C.A., Qian, P., Fotiadis, D., Engel, A., Hunter, C.N., and Bullough, P.A.: Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J. 23, 690 (2004).
5.Barz, W.P., Vermeglio, A., Francia, F., Venturoli, G., Melandri, B.A., and Oesterhelt, D.: Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. Biochemistry 34, 15248 (1995).
6.Recchia, P.A., Davis, C.M., Lilburn, T.G., Beatty, J.T., Parkes-Loach, P.S., Hunter, C.N., and Loach, P.A.: Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. Biochemistry 37, 11055 (1998).
7.Francia, F., Wang, J., Venturoli, G., Melandri, B.A., Barz, W.P., and Oesterhelt, D.: The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38, 6834 (1999).
8.Loach, P.A.: Supramolecular complexes in photosynthetic bacteria. Proc. Natl. Acad. Sci. USA 97, 5016 (2000).
9.Frese, R.N., Olsen, J.D., Branvall, R., Westerhuis, W.H.J., Hunter, C.N., and van Grondelle, R.: The long-range supraorganization of the bacterial photosynthetic unit: a key role for PufX. Proc. Natl. Acad. Sci. USA 97, 5197 (2000).
10.Scheuring, S., Francia, F., Busselez, J., Melandri, B.A., Rigaud, J.-L., and Lévy, D.: Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J. Biol. Chem. 279, 3620 (2004).
11.Roszak, A.W., Howard, T.D., Southall, J., Gardiner, A.T., Law, C.J., and Isaacs, N.W., and Cogdell, R.J.: Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969 (2003).
12.Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H.: Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618 (1985).
13.Allen, J.P., Feher, G., Yeates, T.O., Rees, D.C., Deisenhofer, J., Michel, H., and Huber, R.: Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc. Natl. Acad. Sci. USA. 83, 8589 (1986).
14.Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., and Rees, D.C.: Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc. Natl. Acad. Sci. USA. 84, 5730 (1987).
15.Sumino, A., Dewa, T., Noji, T., Nakano, Y., Watanabe, N., Hildner, R., Bösch, N., Köhler, J., and Nango, M.: Phospholipids modulate self-assembled nanostructure and energy transfer of the light-harvesting complex 2 in lipid bilayers. J. Phys. Chem. B 117, 10395 (2013).
16.Yajima, S., Furukawa, R.A., Nagata, M., Sakai, S., Kondo, M., Iida, K., Dewa, T., and Nango, M: Two-dimensional patterning of bacterial light-harvesting 2 complexes on lipid-modified gold surface. Appl. Phys. Lett. 100, 233701 (2012).
17.McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J., and Isaacs, N.W.: Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 347, 517 (1995).
18.Nagashima, S., Shimada, K., Matsuura, K., and Nagashima, K.V.P.: Transcription of three sets of genes coding for the core light-harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum. Photosynth. Res. 74, 269 (2002).
19.Kondo, M., Nakamura, Y., Fujii, K., Nagata, M., Suemori, Y., Dewa, T., Iida, K., Gardiner, A.T., Cogdell, R.J., and Nango, M.: Self-assembled monolayer of light-harvesting core complexes from photosynthetic bacteria on a gold electrode modified with alkanethiols. Biomacromolecules 8, 2457 (2007).
20.Sumino, A., Dewa, T., Sasaki, N., Kondo, M., and Nango, M.: Electron conduction and photocurrent generation of light-harvesting/reaction center core complex in lipid membrane environments. J. Phys. Chem. Lett. 4, 1087 (2013).
21.Loach, P.A., Androes, G.M., Maksim, A.F., and Calvin, M.: Variation in electron paramagnetic resonance signals of photosynthetic systems wtth the redox level of their environment. Photochem. Photobiol. 2, 443 (1963).
22.Wang, Z.Y., Shimonaga, M., Kobayashi, M., and Nozawa, T.: N-terminal methylation of the core light-harvesting complex in purple photosynthetic bacteria. FEBS Lett. 519, 164 (2002).
23.Sigal, G.B., Bandad, C., Barberis, A., Strominger, J., and Whitesides, G.M.: A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490 (1996).
24.Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K.: Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480 (2001).

Selective immobilization of bacterial light-harvesting proteins and their photoelectric responses

  • Rei Furukawa (a1), Masaharu Kondo (a2), Shunsuke Yajima (a2), Kaori Harada (a2), Kenji V.P. Nagashima (a3), Morio Nagata (a4), Kouji Iida (a5), Takehisa Dewa (a2) and Mamoru Nango (a2) (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed