Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T23:53:26.607Z Has data issue: false hasContentIssue false

Selective immobilization of bacterial light-harvesting proteins and their photoelectric responses

Published online by Cambridge University Press:  17 August 2018

Rei Furukawa*
Affiliation:
The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan
Masaharu Kondo
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan
Shunsuke Yajima
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan
Kaori Harada
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan
Kenji V.P. Nagashima
Affiliation:
Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa 259-1293, Japan
Morio Nagata
Affiliation:
Tokyo University of Science, 12-1 Ichigayafunagawara-cho, Shinjuku-ku, Tokyo 162-0826, Japan
Kouji Iida
Affiliation:
Nagoya Municipal Industrial Research Institute, Atsuta-ku, Nagoya 456-0058, Japan
Takehisa Dewa
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan
Mamoru Nango
Affiliation:
Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi 466-8555, Japan OCARINA, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
*
Address all correspondence to Rei Furukawa at furukawa@ee.uec.ac.jp
Get access

Abstract

With the aim of understanding the excitation energy transfer mechanism in natural photosynthetic membranes, light-harvesting (LH)2 and LH1-reaction center, which are pigment-protein complexes separated from Rhodobacter sphaeroides, were aligned on a planar electrode surface in stripe patterns at 5 µm intervals. Observation of the absorption spectrum and fluorescence microphotographs revealed selective immobilization and conservation of the pigments. Photocurrent signals were obtained when the electrode was illuminated at either 880 or 800 nm. The fabricated structure was confirmed to function as a natural photosynthetic membrane with the highest photocurrent signal being obtained when using a co-immobilized substrate under excitation at 800 nm.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ke, B.: Photosynthesis (Kluwer Academic, Norwell, MA, 2011) p. 1.Google Scholar
2.Karrasch, S., Bullough, P.A., and Ghosh, R.: The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 14, 631 (1995).Google Scholar
3.Jungas, C., Ranck, J.L., Rigaud, J.L., Joliot, P., and Vermeglio, A.: Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J. 18, 534 (1999).Google Scholar
4.Siebert, C.A., Qian, P., Fotiadis, D., Engel, A., Hunter, C.N., and Bullough, P.A.: Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J. 23, 690 (2004).Google Scholar
5.Barz, W.P., Vermeglio, A., Francia, F., Venturoli, G., Melandri, B.A., and Oesterhelt, D.: Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. Biochemistry 34, 15248 (1995).Google Scholar
6.Recchia, P.A., Davis, C.M., Lilburn, T.G., Beatty, J.T., Parkes-Loach, P.S., Hunter, C.N., and Loach, P.A.: Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex. Biochemistry 37, 11055 (1998).Google Scholar
7.Francia, F., Wang, J., Venturoli, G., Melandri, B.A., Barz, W.P., and Oesterhelt, D.: The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38, 6834 (1999).Google Scholar
8.Loach, P.A.: Supramolecular complexes in photosynthetic bacteria. Proc. Natl. Acad. Sci. USA 97, 5016 (2000).Google Scholar
9.Frese, R.N., Olsen, J.D., Branvall, R., Westerhuis, W.H.J., Hunter, C.N., and van Grondelle, R.: The long-range supraorganization of the bacterial photosynthetic unit: a key role for PufX. Proc. Natl. Acad. Sci. USA 97, 5197 (2000).Google Scholar
10.Scheuring, S., Francia, F., Busselez, J., Melandri, B.A., Rigaud, J.-L., and Lévy, D.: Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J. Biol. Chem. 279, 3620 (2004).Google Scholar
11.Roszak, A.W., Howard, T.D., Southall, J., Gardiner, A.T., Law, C.J., and Isaacs, N.W., and Cogdell, R.J.: Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969 (2003).Google Scholar
12.Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H.: Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318, 618 (1985).Google Scholar
13.Allen, J.P., Feher, G., Yeates, T.O., Rees, D.C., Deisenhofer, J., Michel, H., and Huber, R.: Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc. Natl. Acad. Sci. USA. 83, 8589 (1986).Google Scholar
14.Allen, J.P., Feher, G., Yeates, T.O., Komiya, H., and Rees, D.C.: Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc. Natl. Acad. Sci. USA. 84, 5730 (1987).Google Scholar
15.Sumino, A., Dewa, T., Noji, T., Nakano, Y., Watanabe, N., Hildner, R., Bösch, N., Köhler, J., and Nango, M.: Phospholipids modulate self-assembled nanostructure and energy transfer of the light-harvesting complex 2 in lipid bilayers. J. Phys. Chem. B 117, 10395 (2013).Google Scholar
16.Yajima, S., Furukawa, R.A., Nagata, M., Sakai, S., Kondo, M., Iida, K., Dewa, T., and Nango, M: Two-dimensional patterning of bacterial light-harvesting 2 complexes on lipid-modified gold surface. Appl. Phys. Lett. 100, 233701 (2012).Google Scholar
17.McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J., and Isaacs, N.W.: Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 347, 517 (1995).Google Scholar
18.Nagashima, S., Shimada, K., Matsuura, K., and Nagashima, K.V.P.: Transcription of three sets of genes coding for the core light-harvesting proteins in the purple sulfur bacterium, Allochromatium vinosum. Photosynth. Res. 74, 269 (2002).Google Scholar
19.Kondo, M., Nakamura, Y., Fujii, K., Nagata, M., Suemori, Y., Dewa, T., Iida, K., Gardiner, A.T., Cogdell, R.J., and Nango, M.: Self-assembled monolayer of light-harvesting core complexes from photosynthetic bacteria on a gold electrode modified with alkanethiols. Biomacromolecules 8, 2457 (2007).Google Scholar
20.Sumino, A., Dewa, T., Sasaki, N., Kondo, M., and Nango, M.: Electron conduction and photocurrent generation of light-harvesting/reaction center core complex in lipid membrane environments. J. Phys. Chem. Lett. 4, 1087 (2013).Google Scholar
21.Loach, P.A., Androes, G.M., Maksim, A.F., and Calvin, M.: Variation in electron paramagnetic resonance signals of photosynthetic systems wtth the redox level of their environment. Photochem. Photobiol. 2, 443 (1963).Google Scholar
22.Wang, Z.Y., Shimonaga, M., Kobayashi, M., and Nozawa, T.: N-terminal methylation of the core light-harvesting complex in purple photosynthetic bacteria. FEBS Lett. 519, 164 (2002).Google Scholar
23.Sigal, G.B., Bandad, C., Barberis, A., Strominger, J., and Whitesides, G.M.: A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490 (1996).Google Scholar
24.Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K.: Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480 (2001).Google Scholar