Skip to main content Accessibility help

Renewable supercapacitors based on cellulose/carbon nanotubes/[Bmim][NTf2] ionic liquid

  • Bruno S. Noremberg (a1), Ricardo M. Silva (a1), Oscar G. Paniz (a1), José H. Alano (a1), Jairton Dupont (a2) and Neftali L. V. Carreño (a1)...


Improvement of the performance of renewable electronic devices is a crucial point for the consolidation of this emerging technology. Herein, we develop a supercapacitor based on cellulose, carbon nanotubes, and ionic liquids. A conductive paper prepared by simple acid hydrolysis of cellulose and carboxylated carbon nanotubes was used as an electrode. A cellulose sponge impregnated with 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide was used as a separator/electrolyte. Electrochemical tests were performed in a two-electrode cell that presented a specific capacitance of 34.37 F/g when considered the active mass and 97.9% of capacitance retention after 5000 charge/discharge cycles.


Corresponding author

Address all correspondence to Neftali L. V. Carreño at


Hide All
1.Yao, B., Zhang, J., Kou, T., Song, Y., Liu, T., and Li, Y.: Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 10281036 (2017).
2.Han, J.-W., Kim, B., Li, J., and Meyyappan, M.: A carbon nanotube based humidity sensor on cellulose paper. J. Phys. Chem. C 116, 2209422097 (2012).10.1021/jp3080223
3.Noremberg, B., Silva, S.R., Paniz, M.O., Alano, G.J., Gonçalves, H.M.R.F., Wolke, S., Labidi, I.J., Valentini, A., and Carreno, N.L.V.: From banana stem to conductive paper: A capacitive electrode and gas sensor. Sens. Actuators B 240, 459467 (2017).
4.Devarayan, K., Lei, D., Kim, H., and Kim, B.: Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chem. Eng. J. 273, 603609 (2015).10.1016/j.cej.2015.03.115
5.Liu, S., Yu, T., Wu, Y., Li, W., and Li, B.: Evolution of cellulose into flexible conductive green electronics: a smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Adv. 4, 3413434143 (2014).10.1039/C4RA07017H
6.Anothumakkool, B., Soni, R., Bhange, S.N., and Kurungot, S.: Novel scalable synthesis of highly conducting and robust PEDOT paper for high performance flexible solid-supercapacitor. Energy Environ. Sci. 8, 13391347 (2015).10.1039/C5EE00142K
7.Gelesky, M., Scheeren, C., Foppa, L., Pavan, F., Dias, S., and Dupont, J.: Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromolecules 5050, 18881893 (2009).10.1021/bm9003089
8.Martins, V., L. R., and Torresi, M. Ionic liquids in electrochemical energy storage. Curr. Opin. Electrochem. 9, 2632 (2018).
9.Pelissari, F.M., Sobral, P.J.D.A., and Menegalli, F.C.: Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21, 417432 (2014).10.1007/s10570-013-0138-6
10.Cassol, C., Ebeling, G., and Ferrera, B.: A simple and practical method for the preparation and purity determination of halide-free imidazolium ionic liquids. Adv. Synth. Catal. 348, 243248 (2006).
11.Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L., MacDonald, A., and Ruof, R.: Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 17 (2014).
12.Rosa, M.F., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L., MacDonald, A., and Ruof, R.: Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 8392 (2010).
13.Silva, R., Noremberg, B., Marins, N., Alano, J., Santana, L. and Valentini, A., and Carreño, N.: Flexible cellulose-carbon nanotube paper substrate decorated with PZT: sensor properties. MRS Adv. 3(1–2), 3136 (2018).
14.Li, S., Huang, D., Yang, J., and Zhang, B.: Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309317 (2014).
15.Jorcin, J.B., Orazem, M.E., Pébère, N., and Tribollet, B.: CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51, 14731479 (2006).10.1016/j.electacta.2005.02.128
16.Thangavel, R., Kannan, A., Ponraj, R., Thangavel, V., Kim, D., and Lee, Y.: High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources 383, 102109 (2018).
17.Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wagberg, L., and Cui, Y.: Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2, 138145 (2013).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed