Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T06:51:47.112Z Has data issue: false hasContentIssue false

Reduced-temperature solution-processed transparent oxide low-voltage-operable field-effect transistors

Published online by Cambridge University Press:  23 December 2015

Yu Liu
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
Kyle McElhinny
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
Olivia Alley
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
Paul G. Evans
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
Howard E. Katz*
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD 21218, USA
*
Address all correspondence to Howard E. Katz athekatz@jhu.edu
Get access

Abstract

Metal oxide-based transistors can be fabricated by low-cost, large-area solution processing methods, but involve a trade-off between low processing temperature, facile charge transport and high-capacitance/low-voltage transistor gates. We achieve these simultaneously by fabricating zinc oxide and sodium-incorporated alumina (SA) thin films with temperature not exceeding 200 to 250 °C using aqueous and combustion precursors, respectively. X-ray reflectivity shows a compositionally distinct SA boundary layer forming near the substrate and that a portion of the SA is chemically removed during the subsequent semiconductor deposition. Improved etch resistance and reduced dielectric leakage was obtained when (3-glycidoxypropyl) trimethoxysilane was included in the SA precursor.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Crone, B., Dodabalapur, A., Lin, Y.-Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E., and Li, W.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).Google Scholar
2. Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T.: Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015 (2010).Google Scholar
3. Nathan, A., Ahnood, A., Cole, M.T., Sungsik, L., Suzuki, L.Y., Hiralal, P., Bonaccorso, F., Hasan, T., Garcia-Gancedo, L., Dyadyusha, A., Haque, S., Andrew, P., Hofmann, S., Moultrie, J., Chu, D., Flewitt, A.J., Ferrari, A.C., Kelly, M.J., Robertson, J., Amaratunga, G.A.J., and Milne, W.I.: Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486 (2012).CrossRefGoogle Scholar
4. Li, L., Wu, Z., Yuan, S., and Zhang, X.B.: Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7, 2101 (2014).Google Scholar
5. Jeong, S. and Moon, J.: Low-temperature, solution-processed metal oxide thin film transistors. J. Mater. Chem. 22, 1243 (2012).CrossRefGoogle Scholar
6. Hosono, H.: Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515, 6000 (2007).Google Scholar
7. Exarhos, G.J. and Zhou, X.D.: Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025 (2007).CrossRefGoogle Scholar
8. Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).Google Scholar
9. Robertson, J.: High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265 (2004).CrossRefGoogle Scholar
10. Fortunato, E., Barquinha, P., and Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945 (2012).Google Scholar
11. Thomas, S.R., Pattanasattayavong, P., and Anthopoulos, T.D.: Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 42, 6910 (2013).Google Scholar
12. Meyers, S.T., Anderson, J.T., Hung, C.M., Thompson, J., Wager, J.F., and Keszler, D.A.: aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, 17603 (2008).CrossRefGoogle ScholarPubMed
13. Fleischhaker, F., Wloka, V., and Hennig:, I. ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J. Mater. Chem. 20, 6622 (2010).Google Scholar
14. Theissmann, R., Bubel, S., Sanlialp, M., Busch, C., Schierning, G., and Schmechel, R.: High performance low temperature solution-processed zinc oxide thin film transistor. Thin Solid Films 519, 5623 (2011).CrossRefGoogle Scholar
15. Lin, Y.H., Faber, H., Zhao, K., Wang, Q., Amassian, A., McLachlan, M., and Anthopoulos, T.D.: High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv. Mater. 25, 4340 (2013).Google Scholar
16. Kim, M.G., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).CrossRefGoogle ScholarPubMed
17. Hennek, J.W., Smith, J., Yan, A.M., Kim, M.G., Zhao, W., Dravid, V.P., Facchetti, A., and Marks, T.J.: Oxygen “getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. J. Am. Chem. Soc. 135, 10729 (2013).CrossRefGoogle Scholar
18. Bae, E.J., Kang, Y.H., Han, M., Lee, C., and Cho, S.Y.: Soluble oxide gate dielectrics prepared using the self-combustion reaction for high-performance thin-film transistors. J. Mater. Chem. C 2, 5695 (2014).Google Scholar
19. Pal, B.N., Dhar, B.M., See, K.C., and Katz, H.E.: Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8, 898 (2009).CrossRefGoogle ScholarPubMed
20. Zhang, B., Liu, Y., Agarwal, S., Yeh, M.L., and Katz, H.E.: Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. ACS Appl. Mater. Interfaces 3, 4254 (2011).Google Scholar
21. Liu, Y., Guan, P., Zhang, B., Falk, M.L., and Katz, H.E.: ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. Chem. Mater. 25, 3788 (2013).Google Scholar
22. Jo, J.W., Kim, J., Kim, K.-T., Kang, J.-G., Kim, M.-G., Kim, K.-H., Ko, H., Kim, Y.-H., and Park, S.K.: Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors. Adv. Mater. 27, 11821188 (2015).CrossRefGoogle ScholarPubMed
23. Björck, M. and Andersson, G.: GenX: an extensible x-ray reflectivity refinement program utilizing differential evolution. J. Appl. Crystallogr. 40, 1174 (2007).Google Scholar
24. Socratous, J., Banger, K.K., Vaynzof, Y., Sadhanala, A., Brown, A.D., Sepe, A., Steiner, U., and Sirringhaus, H.: Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications. Adv. Funct. Mater. 25, 1873 (2015).Google Scholar
25. Xu, W., Wang, H., Xie, F., Chen, J., Cao, H., and Xu, J.B.: Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS Appl. Mater. Interfaces 7, 5803 (2015).Google Scholar
26. Huang, G., Duan, L., Dong, G., Zhang, D., and Qiu, Y.: High-mobility solution-processed tin oxide thin-film transistors with high-k alumina dielectric working in enhancement mode. ACS Appl. Mater. Interfaces 6, 20786 (2014).CrossRefGoogle Scholar
27. Dickey, K.C., Subramanian, S., Anthony, J.E., Han, L.H., Chen, S., and Loo, Y.L.: Large-Area patterning of a solution-processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors. Appl. Phys. Lett. 90, 244103 (2007).Google Scholar
28. Jia, H.P., Pant, G.K., Gross, E.K., Wallace, R.M., and Gnade, B.E.: Gate induced leakage and drain current offset in organic thin film transistors. Org. Electron. 7, 16 (2006).Google Scholar
29. Keum, C.M., Bae, J.H., Kim, M.H., Choi, W., and Lee, S.D.: Solution-processed low leakage organic field-effect transistors with self-pattern registration based on patterned dielectric barrier. Org. Electron. 13, 778 (2012).Google Scholar
30. Ireland, R.M., Liu, Y., Spalenka, J., Jaiswal, S., Fukumitsu, K., Oishi, S., Saito, H., Ryosuke, M., Evans, P.G., and Katz, H.E.: Device isolation in hybrid field-effect transistors by semiconductor micropatterning using picosecond lasers. Phys. Rev. Appl. 2, 044006 (2014).Google Scholar
Supplementary material: PDF

Liu supplementary material S1

Liu supplementary material

Download Liu supplementary material S1(PDF)
PDF 467.1 KB