Skip to main content Accessibility help

Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot

  • N. Aghoutane (a1), M. El-Yadri (a1), E. Feddi (a1), F. Dujardin (a2), M. Sadoqi (a3) (a4) and G. Long (a3)...


We have studied the effect of hydrostatic pressure on the confined exciton in a spherical core–shell quantum dot. Using a simple variational approach under the framework of effective mass approximation, we have computed the excitonic binding energy as a function of the shell thickness under the applied hydrostatic pressure. Our results show that the ground state binding energy of exciton depends greatly on the shell thickness, which tends to the two-dimensional limit of 4RX, when the ratio a/b tends to unity. The numerical calculations also suggest that the applied hydrostatic pressure favors the attraction between electrons and holes so the excitonic binding energy increases when pressure increases.


Corresponding author

Address all correspondence to Elmustapha Feddi and Gen Long at and


Hide All
1.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.: Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).
2.Zhou, H.S., Honma, I., and Komiyama, H.: Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J. Phys. Chem. 97, 895 (1993).
3.Mews, A., Eychmuller, A., Giersig, M., Schooss, D., and Weller, H.: Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934 (1994).
4.Haus, J.W., Zhou, H.S., Honma, I., and Komiyana, H.: Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B 47, 1359 (1993).
5.Spanhel, L., Weller, H., and Henglein, A.: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632 (1987).
6.Hoener, C.F., Allan, K.A., Brad, A.J., Campion, A., Fox, M.A., Mallouk, T.E., Webber, S.E., and White, J.M.: Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812 (1992).
7.Bryant, G.B.: Theory for quantum-dot quantum wells: pair correlation and internal quantum confinement in nanoheterostructures. Phys. Rev. B 52, 16997 (1995).
8.Ferreyra, J.M. and Proetto, C.R.: Excitons in inhomogeneous quantum dots. Phys. Rev. B 57, 9061 (1998).
9.El Khamkhami, J., Feddi, E., Assaidc, E., Dujardind, F., Stèbè, B., and Diouri, J.: Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E 15, 99106 (2002).
10.Yu, P.Y. and Cordona, M.: Fundamentals of Semiconductors (Springer, Berlin, 1998).
11.Ha, S.H. and Ban, S.L.: Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys. Condens. Matter. 20, 085218 (2008).
12.Arunachalama, N., Peter, A.J., and Lee, C.W.: Pressure induced optical absorption and refractive index changes of a shallow hydrogenic impurity in a quantum wire. Physica E 44, 222228 (2011).
13.El-Yadri, M., Aghoutane, N., Feddi, E., and Dujardin, F.: Tunable excitonic transitions in strained GaAs ultra-thin quantum disk. Superlattices Microstruct. 102, 382390 (2017).
14.El Haouari, M., Talbi, A., Feddi, E., El Ghazi, H., Oukerroume, A., and Dujardin, F.: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231237 (2017).
15.Wagner, J.-M. and Bechstedt, F.: Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).
16.Duque, C.M., Morales, A.L., Mora-Ramos, M.E., and Duque, C.A.: Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 252, 4, 670677 (2015).
17.Eshghi, H.: The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN. Phys. Lett. A 373, 17731776 (2009).
18.Zhang, M. and Shi, J.J.: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).
19.Culchac, F.J., Porras-Montenegro, N., and Latge, A.: Hydrostatic pressure effects on electron states in GaAs–(Ga,Al)As double quantum rings. J. Appl. Phys. 105, 094324 (2009).
20.Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., and Duque, C.A.: Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: effects of hydrostatic pressure and aluminum concentration. J. Lumin. 134, 594599 (2013).
21.Barseghyan, M.G., Mora-Ramos, M.E., and Duque, C.A.: Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl–Teller quantum ring. Eur. Phys. J. B 84, 265 (2011).
22.Dujardin, F., Feddi, E., Assaid, E., and Oukerroum, A.: Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. Eur. Phys. J. B 74, 507 (2010).
23.Feddi, E., Zouitine, A., Oukerroum, A., Dujardin, F., Assaid, E., and Zazoui, M.: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015).
24.El Khamkhami, J., Feddi, E., Assaid, E., Dujardin, F., Stébé, B., and Diouri, J.: Low magnetic field effect on the polarisability of excitons in spherical quantum dots. Phys. Scr. 64, 504 (2001).
25.Atanasoff, J.V.: The dielectric constant of helium. Phys. Rev. 36, 1232 (1930).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed