Skip to main content Accessibility help
×
Home

Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases

  • Tingbin Zhang (a1), Qian Zhang (a1), Jian-Hua Tian (a1), Jin-Feng Xing (a1), Weisheng Guo (a2) and Xing-Jie Liang (a2)...

Abstract

Nanotechnology has been considered as a promising strategy for diagnosis and treatment of various diseases. However, the stability and circulation times of the conventional nano-carriers, such as liposomes and micelles, are still unsatisfied. Perfluorocarbons (PFCs) are biologic inert synthetic materials, which are highly hydrophobic and have a tendency to self-aggregation. Additionally, PFCs themselves can act as 19F magnetic resonance imaging agents and oxygen carriers. Thus, the construction of the fluorinated carriers will not only improve the stability of the carriers, but also endow them with additional functions. Here we review the recent advances of PFC-based nanosystems for diagnosis and treatment of diseases.

Copyright

Corresponding author

Address all correspondence to Weisheng Guo, Jin-Feng Xing and Xing-Jie Liang at tjuguoweisheng@126.com, jinfengxing@tju.edu.cn and liangxj@nanoctr.cn

References

Hide All
1.Shi, J., Kantoff, P.W., Wooster, R., and Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20 (2017).
2.Adiseshaiah, P.P., Crist, R.M., Hook, S.S., and McNeil, S.E.: Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13, 750 (2016).
3.Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813 (2014).
4.Chauhan, V.P. and Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958 (2013).
5.Chen, H., Zhang, W., Zhu, G., Xie, J., and Chen, X.: Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).
6.Krafft, M.P. and Riess, J.G.: Chemistry, physical chemistry, and uses of molecular fluorocarbon–hydrocarbon diblocks, triblocks, and related compounds—unique “apolar” components for self-assembled colloid and interface engineering. Chem. Rev. 109, 1714 (2009).
7.Janjic, J.M. and Ahrens, E.T.: Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 492 (2009).
8.Riess, J.G.: Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr. Opin. Colloid Interface Sci. 14, 294 (2009).
9.Riess, J.G. and Krafft, M.P.: Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 19, 1529 (1998).
10.Riess, J.G.: Oxygen carriers (“blood substitutes”) Raison d'Etre, chemistry, and some physiology Blut ist ein ganz besondrer Saft. Chem. Rev. 101, 2797 (2001).
11.Castro, C.I. and Briceno, J.C.: Perfluorocarbon-based oxygen carriers: review of products and trials. Artif. Organs 34, 622 (2010).
12.Tirotta, I., Dichiarante, V., Pigliacelli, C., Cavallo, G., Terraneo, G., Bombelli, F.B., Metrangolo, P., and Resnati, G.: 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem. Rev. 115, 1106 (2014).
13.Wang, L.-H., Wu, D.-C., Xu, H.-X., and You, Y.-Z.: High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem. Int. Ed. 128, 765 (2016).
14.Wang, M., Liu, H., Li, L., and Cheng, Y.: A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 5, 3053 (2014).
15.Petros, R.A. and DeSimone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615 (2010).
16.Doane, T.L. and Burda, C.: The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885 (2012).
17.Zhang, T., Zhang, C., Xing, J., Xu, J., Li, C., Wang, P.C., and Liang, X.-J.: Multifunctional dendrimers for drug nanocarriers, In, edited by Keservani, R. K., Sharma, A. K. and Kesharwani, R. K., Novel Approaches for Drug Delivery (Medical Information Science Reference 701, Hershey, PA, 2017) p. 245.
18.Mitragotri, S., Burke, P.A., and Langer, R.: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655 (2014).
19.Ozpolat, B., Sood, A.K., and Lopez-Berestein, G.: Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 66, 110 (2014).
20.D'Mello, S.R., Cruz, C.N., Chen, M.-L., Kapoor, M., Lee, S.L., and Tyner, K.M.: The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12, 523 (2017).
21.Pattni, B.S., Chupin, V.V., and Torchilin, V.P.: New developments in liposomal drug delivery. Chem. Rev. 115, 10938 (2015).
22.Barenholz, Y.: Doxil®-the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117 (2012).
23.Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., and Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).
24.Allen, T.M. and Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36 (2013).
25.Caponigro, F., Cornelia, P., Budillon, A., Bryce, J., Avallone, A., De Rosa, V., Ionna, F., and Cornelia, G.: Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol. 11, 339 (2000).
26.Yang, T., Cui, F.-D., Choi, M.-K., Cho, J.-W., Chung, S.-J., Shim, C.-K., and Kim, D.-D.: Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int. J. Pharm. 338, 317 (2007).
27.Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L.: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235 (1990).
28.Vierling, P., Santaella, C., and Greiner, J.: Highly fluorinated amphiphiles as drug and gene carrier and delivery systems. J. Fluor. Chem. 107, 337 (2001).
29.Santaella, C., Frézard, F., Vierling, P., and Riess, J.G.: Extended in vivo blood circulation time of fluorinated liposomes. FEBS Lett. 336, 481 (1993).
30.Klein, E., Ciobanu, M., Klein, J.r.m, Machi, V.r., Leborgne, C., Vandamme, T., Frisch, B.t, Pons, F.o., Kichler, A., Zuber, G., and Lebeau, L.: “HFP” fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. Bioconjug. Chem. 21, 360 (2010).
31.Xiao, Q., Rubien, J.D., Wang, Z., Reed, E.H., Hammer, D.A., Sahoo, D., Heiney, P.A., Yadavalli, S.S., Goulian, M., Wilner, S.E., Baumgart, T., Vinogradov, S.A., Klein, M.L., and Percec, V.: Self-sorting and coassembly of fluorinated, hydrogenated, and hybrid Janus dendrimers into dendrimersomes. J. Am. Chem. Soc. 138, 12655 (2016).
32.Wang, H., Hu, J., Cai, X., Xiao, J., and Cheng, Y.: Self-assembled fluorodendrimers in the co-delivery of fluorinated drugs and therapeutic genes. Polym. Chem. 7, 2319 (2016).
33.Wang, H., Wang, Y., Wang, Y., Hu, J., Li, T., Liu, H., Zhang, Q., and Cheng, Y.: Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 54, 11647 (2015).
34.Rosholm, K.R., Arouri, A., Hansen, P.L., González-Pérez, A., and Mouritsen, O.G.: Characterization of fluorinated catansomes: a promising vector in drug-delivery. Langmuir 28, 2773 (2012).
35.Kataoka, K., Harada, A., and Nagasaki, Y.: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 64, 37 (2012).
36.Kakizawa, Y. and Kataoka, K.: Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 54, 203 (2002).
37.Wei, T., Liu, J., Ma, H., Cheng, Q., Huang, Y., Zhao, J., Huo, S., Xue, X., Liang, Z., and Liang, X.-J.: Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13, 2528 (2013).
38.Gaucher, G., Dufresne, M.-H., Sant, V.P., Kang, N., Maysinger, D., and Leroux, J.-C.: Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169 (2005).
39.Kedar, U., Phutane, P., Shidhaye, S., and Kadam, V.: Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714 (2010).
40.Gong, J., Chen, M., Zheng, Y., Wang, S., and Wang, Y.: Polymeric micelles drug delivery system in oncology. J. Control. Release 159, 312 (2012).
41.Feiner-Gracia, N., Buzhor, M., Fuentes, E., Pujals, S., Amir, R.J., and Albertazzi, L.: Micellar stability in biological media dictates internalization in living cells. J. Am. Chem. Soc. 139, 16677 (2017).
42.Owen, S.C., Chan, D.P., and Shoichet, M.S.: Polymeric micelle stability. Nano Today 7, 53 (2012).
43.Krafft, M.P.: Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 47, 209 (2001).
44.Matsuoka, K. and Moroi, Y.: Micellization of fluorinated amphiphiles. Curr. Opin. Colloid Interface Sci. 8, 227 (2003).
45.Zuckerman, J.E. and Davis, M.E.: Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843 (2015).
46.Stewart, M.P., Sharei, A., Ding, X., Sahay, G., Langer, R., and Jensen, K.F.: In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183 (2016).
47.Zhang, C., Zhang, T., Jin, S., Xue, X., Yang, X., Gong, N., Zhang, J., Wang, P.C., Tian, J.-H., Xing, J., and Liang, X.-J.: Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery. ACS Appl. Mater. Interfaces 9, 4425 (2017).
48.Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G.: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541 (2014).
49.Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., and Jacks, T.: CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380 (2014).
50.Kanasty, R., Dorkin, J.R., Vegas, A., and Anderson, D.: Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967 (2013).
51.Wang, L.L., Liu, Y., Chung, J.J., Wang, T., Gaffey, A.C., Lu, M., Cavanaugh, C.A., Zhou, S., Kanade, R., Atluri, P., Morrisey, E.E., and Burdick, J.A.: Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 1, 983 (2017).
52.Truong, N.P., Gu, W., Prasadam, I., Jia, Z., Crawford, R., Xiao, Y., and Monteiro, M.J.: An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun. 4, 1902 (2013).
53.Hernandez-Garcia, A., Kraft, D.J., Janssen, A.F., Bomans, P.H., Sommerdijk, N.A., Thies-Weesie, D.M., Favretto, M.E., Brock, R., de Wolf, F.A., and Werten, M.W.: Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 9, 698 (2014).
54.Mingozzi, F., and High, K.A.: Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341 (2011).
55.Naldini, L.: Gene therapy returns to centre stage. Nature 526, 351 (2015).
56.Samal, S.K., Dash, M., Van Vlierberghe, S., Kaplan, D.L., Chiellini, E., van Blitterswijk, C., Moroni, L., and Dubruel, P.: Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 41, 7147 (2012).
57.Oishi, M., Nagasaki, Y., Itaka, K., Nishiyama, N., and Kataoka, K.: Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624 (2005).
58.Gary, D.J., Puri, N., and Won, Y.-Y.: Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 121, 64 (2007).
59.He, Y., Nie, Y., Cheng, G., Xie, L., Shen, Y., and Gu, Z.: Viral mimicking ternary polyplexes: a reduction-controlled hierarchical unpacking vector for gene delivery. Adv. Mater. 26, 1534 (2014).
60.Ni, R. and Chau, Y.: Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 136, 17902 (2014).
61.Zhang, T., Song, X., Kang, D., Zhang, L., Zhang, C., Jin, S., Wang, C., Tian, J., Xing, J., and Liang, X.-J.: Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. J. Mater. Chem. B 3, 4698 (2015).
62.Zhang, T., Guo, W., Zhang, C., Yu, J., Xu, J., Li, S., Tian, J.-H., Wang, P.C., Xing, J.-F., and Liang, X.-J.: Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA. ACS Appl. Mater. Interfaces 9, 16006 (2017).
63.Guo, S., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P.C., Dong, A., and Liang, X.-J.: Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505 (2010).
64.Cheng, Y., Yumul, R.C., and Pun, S.H.: Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 128, 12192 (2016).
65.Noble, J.E., De Santis, E., Ravi, J., Lamarre, B., Castelletto, V., Mantell, J., Ray, S., and Ryadnov, M.G.: A de novo virus-like topology for synthetic virions. J. Am. Chem. Soc. 138, 12202 (2016).
66.Yang, J., Zhang, Q., Chang, H., and Cheng, Y.: Surface-engineered dendrimers in gene delivery. Chem. Rev. 115, 5274 (2015).
67.Liu, H., Wang, Y., Wang, M., Xiao, J., and Cheng, Y.: Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 35, 5407 (2014).
68.Lv, J., Chang, H., Wang, Y., Wang, M., Xiao, J., Zhang, Q., and Cheng, Y.: Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. B 3, 642 (2015).
69.Cai, X., Jin, R., Wang, J., Yue, D., Jiang, Q., Wu, Y., and Gu, Z.: Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl. Mater. Interfaces 8, 5821 (2016).
70.Cai, X., Zhu, H., Zhang, Y., and Gu, Z.: Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl. Mater. Interfaces 9, 9402 (2017).
71.Chen, G., Wang, K., Hu, Q., Ding, L., Yu, F., Zhou, Z., Zhou, Y., Li, J., Sun, M., and Oupický, D.: Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl. Mater. Interfaces 9, 4457 (2017).
72.Wesseler, E.P., Iltis, R., and Clark, L.C.: The solubility of oxygen in highly fluorinated liquids. J. Fluor. Chem. 9, 137 (1977).
73.Clark, L.C. and Gollan, F.: Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152, 1755 (1966).
74.Maluf, D., Mas, V., Yanek, K., Stone, J., Weis, R., Massey, D., Spiess, B., Posner, M., and Fisher, R.: Molecular markers in stored kidneys using perfluorocarbon-based preservation solution: preliminary results. Transplant. Proc. 38, 1243 (2006).
75.Cheng, Y., Cheng, H., Jiang, C., Qiu, X., Wang, K., Huan, W., Yuan, A., Wu, J., and Hu, Y.: Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785 (2014).
76.Riess, J.G.: Highly fluorinated systems for oxygen transport, diagnosis and drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 84, 33 (1994).
77.Lowe, K.: Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171 (1999).
78.Williamson, L.M. and Devine, D.V.: Challenges in the management of the blood supply. Lancet 381, 1866 (2013).
79.Shehata, N., Forster, A., Lawrence, N., Rothwell, D.M., Fergusson, D., Tinmouth, A., and Wilson, K.: Changing trends in blood transfusion: an analysis of 244,013 hospitalizations. Transfusion 54, 2631 (2014).
80.Greinacher, A., Fendrich, K., and Hoffmann, W.: Demographic changes: the impact for safe blood supply. Transfus. Med. Hemother. 37, 141 (2010).
81.Hovav, T., Yedgar, S., Manny, N., and Barshtein, G.: Alteration of red cell aggregability and shape during blood storage. Transfusion 39, 277 (1999).
82.Fraker, C.A., Mendez, A.J., and Stabler, C.L.: Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions. J. Phys. Chem. B 115, 10547 (2011).
83.Tao, Z. and Ghoroghchian, P.P.: Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol. 32, 466 (2014).
84.Que, Y., Liu, Y., Tan, W., Feng, C., Shi, P., Li, Y., and Xiaoyu, H.: Enhancing photodynamic therapy efficacy by using fluorinated nanoplatform. ACS Macro Lett. 5, 168 (2016).
85.Day, R.A., Estabrook, D.A., Logan, J.K., and Sletten, E.M.: Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem. Commun. 53, 13043 (2017).
86.Shen, Y., Shuhendler, A.J., Ye, D., Xu, J.-J., and Chen, H.-Y.: Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev. 45, 6725 (2016).
87.Lucky, S.S., Soo, K.C., and Zhang, Y.: Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990 (2015).
88.Riess, J.G.: Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater. Artif. Cells Immobil. Biotechnol. 20, 183 (1992).
89.Song, X., Feng, L., Liang, C., Yang, K., and Liu, Z.: Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16, 6145 (2016).
90.Flögel, U., Ding, Z., Hardung, H., Jander, S., Reichmann, G., Jacoby, C., Schubert, R., and Schrader, J.: In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140 (2008).
91.Srinivas, M., Heerschap, A., Ahrens, E.T., Figdor, C.G., and de Vries, I.J.M.: 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 28, 363 (2010).
92.Kislukhin, A.A., Xu, H., Adams, S.R., Narsinh, K.H., Tsien, R.Y., and Ahrens, E.T.: Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 15, 662 (2016).
93.Guo, Z., Gao, M., Song, M., Li, Y., Zhang, D., Xu, D., You, L., Wang, L., Zhuang, R., Su, X., Liu, T., Du, J., and Zhang, X.: Superfluorinated PEI derivative coupled with 99mTc for ASGPR targeted 19F MRI/SPECT/PA Tri-modality imaging. Adv. Mater. 28, 5898 (2016).
94.Rolfe, B.E., Blakey, I., Squires, O., Peng, H., Boase, N.R.B., Alexander, C., Parsons, P.G., Boyle, G.M., Whittaker, A.K., and Thurecht, K.J.: Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136, 2413 (2014).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed