Skip to main content Accessibility help

Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective

  • Wen Luo (a1) (a2), Jean-Jacques Gaumet (a2) and Liqiang Mai (a1) (a3)


Sodium-ion batteries (SIBs) have received intensive attentions owing to the abundant and inexpensive sodium (Na) resource. Layered vanadium oxides are featured with various valence states and corresponding compounds, and through multi-electron reaction they are capable to deliver high Na storage capacity. The rational construction of unique structures is verified to improve their Na storage properties. This perspective provides an overview of recent advances in layered vanadium oxide for SIBs, with a particular focus on construction of novel nanostructures, and mechanism studies via in situ characterization. Finally, we predict possible breakthroughs and future trends that lie ahead for high-performance layered vanadium oxides SIBs cathode.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
      Available formats


Corresponding author

Address all correspondence to Jean-Jacques Gaumet at and Liqiang Mai at


Hide All
1. Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).
2. Goodenough, J.B. and Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167 (2013).
3. Mai, L., Tian, X., Xu, X., Chang, L., and Xu, L.: Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114, 11828 (2014).
4. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23, 947 (2013).
5. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-González, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).
6. Kim, S.W., Seo, D.H., Ma, X., Ceder, G., and Kang, K.: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710 (2012).
7. Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G.: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680 (2011).
8. Mai, L., Xu, X., Xu, L., Han, C., and Luo, Y.: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).
9. An, Q., Lv, F., Liu, Q., Han, C., Zhao, K., Sheng, J., Wei, Q., Yan, M., and Mai, L.: Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 14, 6250 (2014).
10. Murphy, D., Christian, P., DiSalvo, F., and Waszczak, J.: Lithium incorporation by vanadium pentoxide. Inorg. Chem. 18, 2800 (1979).
11. Chernova, N.A., Roppolo, M., Dillon, A.C., and Whittingham, M.S.: Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526 (2009).
12. Sohn, J.I., Joo, H.J., Ahn, D., Lee, H.H., Porter, A.E., Kim, K., Kang, D.J., and Welland, M.E.: Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 9, 3392 (2009).
13. Wilhelmi, K.A., Waltersson, K., and Kihlborg, L.: A refinement of the crystal structure of V6O13 . Acta Chem. Scand. 25, 2675 (1971).
14. Zavalij, P.Y. and Whittingham, M.S.: Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 55, 627 (1999).
15. Oka, Y., Yao, T., Yamamoto, N., Ueda, Y. and Hayashi, A.: Phase transition and V4+-V4+ pairing in VO2(B). J. Solid State Chem. 105, 271 (1993).
16. Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y.S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., and Chen, L.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156 (2013).
17. Li, S., Dong, Y., Xu, L., Xu, X., He, L., and Mai, L.: Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545 (2014).
18. Dong, Y., Li, S., Zhao, K., Han, C., Chen, W., Wang, B., Wang, L., Xu, B., Wei, Q., and Zhang, L.: Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 8, 1267 (2015).
19. Wang, Q., Zhao, B., Zhang, S., Gao, X., and Deng, C.: Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. J. Mater. Chem. A 3, 7732 (2015).
20. Raju, V., Rains, J., Gates, C., Luo, W., Wang, X., Stickle, W.F., Stucky, G.D., and Ji, X.: Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14, 4119 (2014).
21. Mai, L., Wei, Q., An, Q., Tian, X., Zhao, Y., Xu, X., Xu, L., Chang, L., and Zhang, Q.: Nanoscroll buffered hybrid nanostructural VO2(B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969 (2013).
22. Baudrin, E., Sudant, G., Larcher, D., Dunn, B., and Tarascon, J.M.: Preparation of nanotextured VO2(B) from vanadium oxide aerogels. Chem. Mater. 18, 4369 (2006).
23. Li, R. and Liu, C.Y.: VO2(B) nanospheres: hydrothermal synthesis and electrochemical properties. Mater. Res. Bull. 45, 688 (2010).
24. Zhang, L., Zhao, K., Xu, W., Meng, J., He, L., An, Q., Xu, X., Luo, Y., Zhao, T., and Mai, L.: Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332 (2014).
25. Nethravathi, C., Rajamathi, C.R., Rajamathi, M., Gautam, U.K., Wang, X., Golberg, D., and Bando, Y.: N-doped graphene–VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interface 5, 2708 (2013).
26. Niu, C., Meng, J., Han, C., Zhao, K., Yan, M., and Mai, L.: VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873 (2014).
27. Uchaker, E., Gu, M., Zhou, N., Li, Y., Wang, C. and Cao, G.: Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880 (2013).
28. Wang, W., Jiang, B., Hu, L., Lin, Z., Hou, J., and Jiao, S.: Single crystalline VO2 nanosheets: a cathode material for sodium-ion batteries with high rate cycling performance. J. Power Sources 250, 181 (2014).
29. Chao, D., Zhu, C., Xia, X., Liu, J., Zhang, X., Wang, J., Liang, P., Lin, J., Zhang, H., and Shen, Z.X.: Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565 (2015).
30. Balogun, M.S., Luo, Y., Lyu, F., Wang, F., Yang, H., Li, H., Liang, C., Huang, M., Huang, Y., and Tong, Y.: Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interface 8, 15 (2016).
31. He, G., Li, L., and Manthiram, A.: VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries. J. Mater. Chem. A 3, 28 (2015).
32. Ali, G., Lee, J.H., Oh, S.H., Cho, B.W., Nam, K.W., and Chung, K.Y.: Investigation of the Na intercalation mechanism into nanosized V2O5/C composite cathode material for Na-ion batteries. ACS Appl. Mater. Interface 8, 9 (2016).
33. Su, D., Dou, S., and Wang, G.: Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2, 11185 (2014).
34. Tepavcevic, S., Xiong, H., Stamenkovic, V.R., Zuo, X., Balasubramanian, M., Prakapenka, V.B., Johnson, C.S., and Rajh, T.: Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530 (2012).
35. Su, D. and Wang, G.: Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218 (2013).
36. Zhu, K., Zhang, C., Guo, S., Yu, H., Liao, K., Chen, G., Wei, Y., and Zhou, H.: Sponge-like cathode material self-assembled from two-dimensional V2O5 nanosheets for sodium-ion batteries. ChemElectroChem 2, 1660 (2015).
37. McNulty, D., Buckley, D.N., and O'Dwyer, C.: Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J. Power Sources 267, 831 (2014).
38. Giorgetti, M., Passerini, S., Smyrl, W.H., and Berrettoni, M.: Evidence of bilayer structure in V2O5 xerogel. Inorg. Chem. 39, 1514 (2000).
39. Moretti, A. and Passerini, S.: Bilayered nanostructured V2O5·nH2O for metal batteries. Adv. Energy Mater. (2016). DOI: 10.1002/aenm.201600868.
40. Petkov, V., Trikalitis, P.N., Bozin, E.S., Billinge, S.J., Vogt, T., and Kanatzidis, M.G.: Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157 (2002).
41. Moretti, A., Maroni, F., Osada, I., Nobili, F., and Passerini, S.: V2O5 aerogel as a versatile cathode material for lithium and sodium batteries. ChemElectroChem 2, 529 (2015).
42. Wei, Q., Liu, J., Feng, W., Sheng, J., Tian, X., He, L., An, Q., and Mai, L.: Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 3, 8070 (2015).
43. Wei, Q., Jiang, Z., Tan, S., Li, Q., Huang, L., Yan, M., Zhou, L., An, Q., and Mai, L.: Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Inter. 7, 18211 (2015).
44. Moretti, A., Jeong, S., and Passerini, S.: Enhanced cycling ability of V2O5 aerogel using room-temperature ionic liquid-based electrolytes. Chem ElectroChem. (2016). DOI: 10.1002/celc.201600040.
45. Moretti, A., Secchiaroli, M., Buchholz, D., Giuli, G., Marassi, R., and Passerini, S.: Exploring the low voltage behavior of V2O5 aerogel as intercalation host for sodium ion battery. J. Electrochem. Soc. 14, A2723 (2015).
46. Sun, X., Zhou, C., Xie, M., Hu, T., Sun, H., Xin, G., Wang, G., George, S.M., and Lian, J.: Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chem. Commun. 50, 10703 (2014).
47. Sheng, J., Li, Q., Wei, Q., Zhang, P., Wang, Q., Lv, F., An, Q., Chen, W., and Mai, L.: Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 7, 1604 (2014).
48. Chae, O.B., Kim, J., Park, I., Jeong, H., Ku, J.H., Ryu, J.H., Kang, K., and Oh, S.M.: Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 26, 5874 (2014).
49. Salloux, K., Chaput, F., Wong, H., Dunn, B., and Breiter, M.: Lithium intercalation in vanadium pentoxide aerogels. J. Electrochem. Soc. 142, L191 (1995).
50. Le, D., Passerini, S., Guo, J., Ressler, J., Owens, B., and Smyrl, W.: High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143, 2099 (1996).
51. Rolison, D.R. and Dunn, B.: Electrically conductive oxide aerogels: new materials in electrochemistry. J. Mater. Chem. 11, 963 (2001).
52. Uchaker, E., Zheng, Y., Li, S., Candelaria, S., Hu, S., and Cao, G.: Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J. Mater. Chem. A 2, 18208 (2014).
53. Liu, S., Tong, Z., Zhao, J., Liu, X., Wang, J., Ma, X., Chi, C., Yang, Y., Liu, X., and Li, Y.: Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 25645 (2016).
54. Jian, Z., Yuan, C., Han, W., Lu, X., Gu, L., Xi, X., Hu, Y.S., Li, H., Chen, W., and Chen, D.: Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265 (2014).
55. Saravanan, K., Mason, C.W., Rudola, A., Wong, K.H., and Balaya, P.: The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444 (2013).
56. Jian, Z., Zhao, L., Pan, H., Hu, Y.-S., Li, H., Chen, W., and Chen, L.: Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86 (2012).
57. Shen, W., Wang, C., Liu, H., and Yang, W.: Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chem. – Eur. J. 19, 14712 (2013).
58. Liu, J., Tang, K., Song, K., van Aken, P.A., Yu, Y., and Maier, J.: Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6, 5081 (2014).
59. Shen, W., Li, H., Guo, Z., Wang, C., Li, Z., Xu, Q., Liu, H., Wang, Y.G., and Xia, Y.: Double nano-carbon synergistically modified Na3V2(PO4)3: an advanced cathode for high-rate and long life sodium-ion batteries. ACS Appl. Mater. Interface 8, 24 (2016).
60. Fang, Y., Xiao, L., Ai, X., Cao, Y., and Yang, H.: Hierarchical carbon framework wrapped Na3V2 (PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895 (2015).
61. Xu, Y., Wei, Q., Xu, C., Li, Q., An, Q., Zhang, P., Sheng, J., Zhou, L., and Mai, L.: Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1600389 (2016).
62. Ren, W., Zheng, Z., Xu, C., Niu, C., Wei, Q., An, Q., Zhao, K., Yan, M., Qin, M., and Mai, L.: Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 25, 145 (2016).
63. Wang, X., Niu, C., Meng, J., Hu, P., Xu, X., Wei, X., Zhou, L., Zhao, K., Luo, W., Yan, M., and Mai, L.: Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 5, 1500716 (2015).
64. Ma, X., Luo, W., Yan, M., He, L., and Mai, L.: In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24, 165 (2016).
65. Wan, J., Shen, F., Luo, W., Zhou, L., Dai, J., Han, X., Bao, W., Xu, Y., Panagiotopoulos, J., and Fan, X.: In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chem. Mater. 28, 6528 (2016).
66. Lu, X., Adkins, E.R., He, Y., Zhong, L., Luo, L., Mao, S.X., Wang, C.M., and Korgel, B.A.: Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 28, 1236 (2016).
67. Niu, C., Liu, X., Meng, J., Xu, L., Yan, M., Wang, X., Zhang, G., Liu, Z., Xu, X., and Mai, L.: Three dimensional V2O5/NaV6O15 hierarchical heterostructures: controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy 27, 147 (2016).
68. Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J., and Huang, J.Y.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722 (2012).
69. Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaïm, E., and Delmas, C.: P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74 (2012).
70. Wang, Y. and Cao, G.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).
71. Shakoor, R., Seo, D.H., Kim, H., Park, Y.U., Kim, J., Kim, S.W., Gwon, H., Lee, S., and Kang, K.: A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22, 20535 (2012).
72. Ogata, K., Salager, E., Kerr, C., Fraser, A., Ducati, C., Morris, A., Hofmann, S., and Grey, C.P.: Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat. Commun. 5, 3217 (2014).
73. Wujcik, K.H., Pascal, T.A., Pemmaraju, C., Devaux, D., Stolte, W.C., Balsara, N.P., and Prendergast, D.: Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium–sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first principles calculations. Adv. Energy Mater. 5, 1500285 (2015).
74. Shi, F., Ross, P.N., Zhao, H., Liu, G., Somorjai, G.A., and Komvopoulos, K.: A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137, 3181 (2015).
75. Venkatesh, G., Pralong, V., Lebedev, O., Caignaert, V., Bazin, P., and Raveau, B.: Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation. Electrochem. Commun. 40, 100 (2014).
76. Uchaker, E. and Cao, G.: The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem. – Asian J. 10, 1608 (2015).
77. Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., and Ohsawa, Y.: Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Inter. 3, 4165 (2011).
78. Hu, Z., Zhu, Z., Cheng, F., Zhang, K., Wang, J., Chen, C., and Chen, J.: Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309 (2015).
79. Darwiche, A., Marino, C., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L.: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805 (2012).
80. Yuan, S., Huang, X., Ma, D., Wang, H., Meng, F., and Zhang, X.: Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273 (2014).
81. Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., Kubota, K., Fukunishi, M., Shibahara, S., Son, J.Y., Cui, Y.T., and Oji, H.: Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochem. Commun. 44, 66 (2014).

Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective

  • Wen Luo (a1) (a2), Jean-Jacques Gaumet (a2) and Liqiang Mai (a1) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed