Skip to main content Accessibility help

Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion

  • Hiroaki Tada (a1)


This article reviews the semiconductor and metal-based nanohybrid-sensitized photoelectrochemical (PEC) cells for hydrogen generation from water. The nanoscale hybridization of sensitizers in the photoanode can enhance light harvesting, interfacial charge transfer, charge separation, and induce a catalytic effect in dependence on the kind of the components and interfacial junction state. Subsequent to the introduction, second and third sections present the basic structure and design of the nanohybrid-sensitized PEC cell. Fourth section deals with the effect of the interfacial bond between quantum dots and TiO2 on the electron injection process. Fifth section mainly describes the formation of heteroepitaxial junction between the components of nanohybrids. In the sixth section, the state-of-the-art nanohybrid-sensitized PEC cells are treated with a particular emphasis placed on the interface state.


Corresponding author

Address all correspondence to Hiroaki Tada at


Hide All
1.Osterloh, F. E.: Inorganic materials as catalysts for photoelectrochemical splitting of water. Chem. Mater. 20, 35 (2008).
2.Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).
3.Tachibana, Y., Vayssieres, L., and Durrant, J. R.: Artificial photosynthesis for water-splitting. Nat. Photonics 6, 511 (2012).
4.Hisatomi, T., Kubota, J., and Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).
5.Fabian, D. M., Hu, S., Singh, N., Houle, F. A., Hisatomi, T., Domen, K., Osterlohf, F. E., and Ardo, S.: Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825 (2015).
6.Lianos, P.: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity abd hydrogen. Appl. Catal. B Environ. 210, 235 (2017).
7.Sahai, S., Ikram, A., Rai, S., Shrivastav, R., Dass, S., and Satsangi, V. R.: Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renewable Sustainable Energy Rev. 68, 19 (2017).
8.Weller, H.: Colloidal semiconductor Q-particles: chemistry in the transition region between solid and molecular states. Angew. Chem. Int. Ed. Engl. 32, 43 (1993).
9.Tada, H., Fujishima, M., and Kobayashi, H.: Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 40, 4232 (2011).
10.Frese, K. W. and Canfiled, D. G.: Adsorption of hydroxide and sulfide ions on single-crystal n-cadmium selenide electrodes. J. Electrochem. Soc. 131, 2614 (1984).
11.Yu, W. W., Qu, L., Guo, W., and Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).
12.Jasieniak, J., Smith, L., van Embden, J., and Malvaney, P.: Re-examination of the size-dependent absorption of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).
13.Diguna, L. J., Shen, Q., Kobayashi, J., and Toyoda, T.: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 023116 (2007).
14.Kubacka, A., Fernandez-Garcia, M., and Colon, G.: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).
15.Ueno, K. and Misawa, H.: Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C 15, 31 (2013).
16.Lang, X., Chen, X., and Zhao, J.: Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473 (2014).
17.Panayotov, D. A. and Morris, J. R.: Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surf. Sci. Rep. 71, 77 (2016).
18.Kowalska, E., Abe, R., and Ohtani, B.: Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 2009, 241 (2009).
19.Naya, S., Inoue, A., and Tada, H.: Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J. Am. Chem. Soc. 132, 6292 (2010).
20.Ide, Y., Matsuoka, M., and Ogawa, M.: Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762 (2010).
21.Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., and Whangbo, M.-H.: Facile in situ synthesis of visible-light plasmonic photocatalysts M–TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079 (2011).
22.Kimura, K., Naya, S., Jin-nouchi, Y., and Tada, H.: TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst's activity. J. Phys. Chem. C 116, 7111 (2012).
23.Tsukamoto, D., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., and Hirai, T.: Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134, 6309 (2012).
24.Naya, S., Niwa, T., Kume, T., and Tada, H.: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem. Int. Ed. 53, 7305 (2014).
25.Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S. B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).
26.Thimsen, E., Formal, F. L., Grätzel, M., and Warren, S. C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).
27.Zhong, Y., Ueno, K., Mori, Y., Shi, X., Oshikiri, T., Murakoshi, K., Inoue, H., and Misawa, H.: Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed. 53, 10350 (2014).
28.Meissner, D., Memming, R., Kastening, B., and Bahnemann, D.: Fundamental problems of water splitting as cadmium sulfide. Chem. Phys. Lett. 127, 419 (1986).
29.Tachibana, Y., Akiyama, H. Y., Ohtsuka, Y., Torimoto, T., and Kuwabata, S.: CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 36, 88 (2007).
30.Licht, S.: Aqueous solubilities products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 (1988).
31.Bühler, N., Meier, K., and Beber, J.-F.: Photochemical hydrogen production with cadmium sulfide suspensions. J. Phys. Chem. 88, 3261 (1984).
32.Gonzalez-Pedro, V., Zarazua, I., Barea, E. M., Fabregat-Santiago, F., de la Rosa, E., Mora-Sero, I., and Gimenez, S.: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. C 118, 891 (2014).
33.Jin-nouchi, Y., Naya, S., and Tada, H.: Quantum dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J. Phys. Chem. C 114, 16837 (2010).
34.Mora-Seró, I., Giménez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., and Bisquert, J.: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848 (2009).
35.Serpone, N., Bergarello, E., and Grätzel, M.: Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions. J. Chem. Soc. Chem. Commun. 1984, 342 (1984).
36.Lide, D. R., ed.: Handbook of Chemistry and Physics, 83rd edn. CRC Press, New York, 2002.
37.Yoshii, M., Kobayashi, H., and Tada, H.: Sub-bandgap excitation-induced electron injection from CdSe quantum dots to TiO2 in the directly coupled system. ChemPhysChem 16, 1846 (2015).
38.Fujishima, M., Nakabayashi, Y., Takayama, K., Kobayashi, H., and Tada, H.: High coverage formation of CdS quantum dots on TiO2 by the photocatalytic growth of preformed seeds. J. Phys. Chem. C 120, 17365 (2016).
39.Lee, Y.-L., Chi, C.-F., and Liau, S.-Y.: CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922 (2010).
40.Seol, M., Kim, H., Kim, W., and Yong, K.: Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem. Commun. 12, 1416 (2010).
41.Kim, H. and Yong, K.: Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces 5, 13258 (2013).
42.Wang, G., Yang, X., Qian, F., Zhang, J. Z., and Li, Y.: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088 (2010).
43.Trevisan, R., Rodenas, P., Gonzalez-Pedro, V., Sima, C., Sanchez, R. S., Barea, E. M., Mora-Sero, I., Fabregat-Santiago, F., and Gimenez, S.: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. Lett. 4, 141 (2013).
44.Hodes, G.: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys. Chem. Chem. Phys. 9, 2181 (2007).
45.Albero, J., Clifford, J. N., and Palomares, E.: Quantum dot based molecular solar cells. Coord. Chem. Rev. 263–264, 53 (2014).
46.Jin, L., AlOtaibi, B., Benetti, D., Li, S., Zhao, H., Mi, Z., Vomiero, A., and Rosei, F.: Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3, 1500345 (2016).
47.Qiu, Q., Wang, P., Xu, L., Wang, D., Lin, Y., and Xie, T.: Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO2 nanowires and their application for solar cells. Phys. Chem. Chem. Phys. 19, 15724 (2017).
48.Kozytskiy, A. V., Stroyuk, A. L., Kuchmy, S. Y., Streltsov, E. A., Skorik, N. A., and Mskalyuk, V. O.: Effect of the method of preparation of ZnO/CdS and TiO2/CdS film nanoheterostructures on their photoelectrochemical properties. Theor. Exp. Chem. 49, 165 (2013).
49.Ding, X., Li, Y., Zhao, J., Zhu, Y., Li, Y., Deng, W., and Wang, C.: Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyts under visible-light irradiation. APL Mater. 3, 104410 (2015).
50.Kitazono, K., Akashi, R., Fujiwara, K., Akita, A., Naya, S., Fujishima, M., and Tada, H.: Photocatalytic synthesis of CdS(core)-CdSe(shell) quantum dots with a heteroepitaxial junction on TiO2: photoelectrochemical hydrogen generation from water. ChemPhysChem 18, 2840 (2017).
51.Fujii, M., Nagasuna, K., Fujishima, M., Akita, T., and Tada, H.: Photodeposition of CdS quantum dots on TiO2: preparation, characterization, and reaction mechanism. J. Phys. Chem. C 113, 16711 (2009).
52.Fujishima, M., Tanaka, K., Sakami, N., Wada, M., Morii, K., Hattori, T., Sumida, Y., and Tada, H.: Photocatalytic current doubling-induced generation of uniform selenium and cadmium selenide quantum dots on titanium(IV) oxide. J. Phys. Chem. C 118, 8917 (2014).
53.Tsubota, S., Haruta, M., Kobayashi, T., Ueda, A., and Nakahara, Y.: Preparation of highly dispersed gold on titanium and magnesium oxide. In Preparation of Catalysts V, Poncelet, G., Jacobs, P. A., Grange, P. and Delmon, B., eds.; Elsevier: Amsterdam, 1991, pp. 695704.
54.Tada, H., Kiyonaga, T., and Naya, S.: Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849 (2009).
55.Tada, H., Suzuki, F., Ito, S., Kawahara, T., Akita, T., Tanaka, K., and Kobayashi, H.: Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organic compound. J. Phys. Chem. B 106, 8714 (2002).
56.Negishi, R., Naya, S., Kobayashi, H., and Tada, H.: Gold(core)-lead(shell) nanoparticle-loaded titanium(IV) oxide prepared by underpotential photodeposition: plasmonic water oxidation. Angew. Chem. Int. Ed. 56, 10347 (2017).
57.Mulvaney, P., Giersig, M., and Henglein:, A. Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. J. Phys. Chem. 96, 10419 (1992).
58.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
59.Tachibana, Y., Umekita, K., Otsuka, Y., and Kuwabata, S.: Performance improvement of CdSe quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D 41, 102002 (2008).
60.Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555 (1986).
61.Naya, S., Kume, T., Akashi, R., Fujishima, M., and Tada, H.: Red-light-driven water splitting by Au(core)-CdS(shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 140, 1251 (2018).
62.Tian, Y. and Tatsuma, T.: Mechanism and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).
63.Du, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., and Tachiya, M.: Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454 (2009).
64.Zaban, A., Greenshtein, M., and Bisquert, J.: Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859 (2003).

Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion

  • Hiroaki Tada (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed