Skip to main content Accessibility help
×
Home

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers

  • Haruki Maki (a1), Rie Chiba (a1), Tsunenobu Onodera (a1), Hitoshi Kasai (a1), Rodrigo Sato (a2), Yoshihiko Takeda (a2) and Hidetoshi Oikawa (a1)...

Abstract

The third-order nonlinear optical (NLO) susceptibility for morphologically controlled polydiacetylene (PDA) nanocrystals (NCs) and PDA nanofibers (NFs) have been determined for the first time by the experimental combination of transient pump-probe spectroscopy and spectroscopic ellipsometry. The figure of the merit of PDA NFs was much superior to PDA NCs and/or PDA bulk crystals, and the excitonic relaxation time was of order of sub-pico second. Namely, this is the first case to reveal the morphological effect on NLO response. PDA NFs having the long effective π-conjugation length are one of the most promising organic third-order NLO nanomaterials toward the photonic device application.

Copyright

Corresponding author

Address all correspondence to Hidetoshi Oikawa at hidetoshi.oikawa.e8@tohoku.ac.jp

References

Hide All
1.Rinkevicius, Z., Li, X., Sandberg, J.A.R., and Agren, H.: Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory. Phys. Chem. Chem. Phys. 16, 8981 (2014).
2.Aljada, M., Alameh, K.E., Lee, Y.-T., and Chung, I.I.-S.: High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. Opt. Exp. 14, 6823 (2006).
3.Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Gotzinger, S., and Sandoghdar, V.: A single-molecule optical transistor. Nature 460, 76 (2009).
4.Luan, F., Gu, B., Gomes, A.S.L., Yong, K.T., Wen, S.C., and Prasad, P.N.: Lasing in nanocomposite random media. Nano Today 10, 168 (2015).
5.Okamoto, R., O'Brien, J.L., Hofmann, H.F., Nagata, T., Sasaki, K., and Takeuchi, S.: An entanglement filter. Science 323, 483 (2009).
6.Smith, S.D.: Laser, nonlinear optics and optical computers. Nature 316, 319 (1985).
7.Oikawa, H., Onodera, T., Masuhara, A., Kasai, H., and Nakanishi, H.: New class materials of organic-inorganic hybridized nanocrystals/nanoparticles, and their assembled micro- and nano-structure toward photonics. Adv. Polym. Sci. 231, 147 (2010).
8.Yarimaga, O., Jaworski, J., Yoon, B., and Kim, J.-M.: Polydiacetylenes: supramolecular smart material with a structural hierarchy for sensing, imaging and display applications. Chem. Commun. 48, 2469 (2012).
9.Wegner, G.: Solid-state polymerization mechanisms. Pure Appl. Chem. 49, 443 (1997).
10.Matsuda, H., Molyneux, S., Kar, A.K., Wherrett, B.S., Okada, S., and Nakanishi, H.: Third-order nonlinear optical properties of polydiacetylene crystal. J. Photopolym. Sci. Technol. 6, 261 (1993).
11.Giorgetti, E., Margheri, G., Sottini, S., Chen, X., Cravino, A., Comoretto, D., Cuniberti, C., Dell'Erba, C., and Dellepiane, G.: Linear and nonlinear characterization of polyDCHD-HS films. Synth. Met. 115, 257 (2000).
12.Oikawa, H.: Hybridized organic nanocrystyals for optically functional materials. Bull. Chem. Soc. Jpn. 84, 233 (2011).
13.Oikawa, H., Kasai, H., and Nakanishi, H.: Fabrication of organic microcrystals and their optical properties. In Anisotropic Organic Materials—Approaches to Polar Order, ACS Symposium Series 798, edited by Glaser, R., and Kaszynski, P. (ACS, Washington, 2001), pp. 158168.
14.Oikawa, H. and Nakanishi, H.: Reprecipitation method for organic nanocrystals. In Nano Science and Technology—Single Organic Nanoparticles, edited by Masuhara, H., Nakanishi, H. and Sasaki, K. (Springer, Berlin, 2003), pp. 1731.
15.Oikawa, H., Mitsui, T., Onodera, T., Kasai, H., Nakanishi, H., and Sekiguchi, T.: Crystal size dependence of fluorescence spectra from Perylene nanocrystals evaluated by scanning near-field optical microscopy. Jpn. J. Appl. Phys. 42, L111 (2003).
16.Volkov, V.V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., and Nakanishi, H.: Size-dependent optical properties of polydiacetylene nanocrystals. J. Phys. Chem. B 108, 7674 (2004).
17.Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., and Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Exp. 7, 2218 (2017).
18.Sato, R., Momida, H., Ohnuma, M., Sasase, M., Ohno, T., Kishimoto, N., and Takeda, Y.: Experimental dispersion of the third order optical susceptibility of Ag nanoparticles. J. Opt. Soc. Am. B 29, 2410 (2012).
19.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization. Phys. Rev. B 90, 125417 (2014).
20.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Spectral investigation of nonlinear local field effects in Ag nanoparticles. J. Appl. Phys. 117, 113101 (2015).
21.Sato, R., Ishii, S., Nagao, T., Naito, M., and Takeda, Y.: Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures. ACS Photonics 5, 3452 (2018).
22.Enkelmann, V.: Structural aspects of the topochemical polymerization of diacetylene. Adv. Polym. Sci. 63, 91 (1984).
23.Agrawal, G.P., Cojan, C., and Flytzanis, C.: Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 17, 776 (1978).
24.Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., and Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279283 (2010).
25.Flory, F., Escoubas, L., and Berginc, G.: Optical properties of nanostructured materials. J. Nanophotonics 5, 052502 (2011).
26.Ganeev, R.A., and Usmanov, T.: Nonlinear-optical parameters of various media. Quantum Electron. 37, 605 (2007).
27.Astill, A.G.: Material figures of merit for non-linear optics. Thin Solid Films 204, 1 (1991).
28.Bruggeman, D.A.G.: Calculation of various physics constants in heterogeneous substrates. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636 (1935).
29.Aspnes, D.E.: Optical-properties of thin-films. Thin Solid Films 89, 249 (1982).
30.Murata, H., Takada, N., Tsutsui, T., Saito, S., Kurihara, T., and Kaino, T.: Spectra of χ(3)(−3ω;ω,ω,ω) in poly(2,5-thienylenevinylene) thin films with controlled conjugation lengths. J. Appl. Phys. 70, 2915 (1991).
31.Schrof, W., Rozouvan, S., Hartmann, T., Möhwald, H., Belov, V., and Van Keuren, E.: Nonlinear optical properties of novel low-bandgap polythiophenes. J. Opt. Soc. Am. B 15, 889 (1998).
32.Gu, B., Zhao, C., Baev, A., Yong, K.-T., Wen, S., and Prasad, P.N.: Molecular nonlinear optics: recent advances and applications. Adv. Opt. Photonics 8, 328 (2016).
Type Description Title
WORD
Supplementary materials

Maki et al. supplementary material
Figures S1-S5

 Word (1.9 MB)
1.9 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed