Skip to main content Accessibility help
×
Home

Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film

  • Niraj Bhattarai (a1) (a2), Andrew W. Forbes (a1) (a2), Rajendra P. Dulal (a3), Ian L. Pegg (a1) (a2) and John Philip (a1) (a2)...

Abstract

Here, the authors report a detailed method of growing LaAlGe, a nonmagnetic Weyl semimetal, thin film on silicon(100) substrates by molecular beam epitaxy and their structural and electrical characterizations. About 50-nm-thick LaAlGe films were deposited and annealed for 16 h in situ at a temperature of 793 K. As-grown high-quality films showed uniform surface topography and near ideal stoichiometry with a body-centered tetragonal crystal structure. Temperature-dependent longitudinal resistivity can be understood with dominant interband s–d electron–phonon scattering in the temperature range of 5–40 K. Hall measurements confirmed the semimetallic nature of the films with an electron-dominated charge carrier density of ~7.15 × 1021 cm−3 at 5 K.

Copyright

Corresponding author

Address all correspondence to Niraj Bhattarai at bhattarai@cua.edu

References

Hide All
1.Chang, G., Singh, B., Xu, S.Y., Bian, G., Huang, S.M., Hsu, C.H., Belopolski, I., Alidoust, N., Sanchez, D.S., Zheng, H., and Lu, H.: Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041104 (2018).
2.Puphal, P., Mielke, C., Kumar, N., Soh, Y., Shang, T., Medarde, M., White, J.S., and Pomjakushina, E.: Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals R AlGe (R=Pr, Ce). Phys. Rev. Mater. 3, 024204 (2019).
3.Xu, S.Y., Alidoust, N., Chang, G., Lu, H., Singh, B., Belopolski, I., Sanchez, D.S., Zhang, X., Bian, G., Zheng, H., and Husanu, M.A.: Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).
4.Meng, B., Wu, H., Qiu, Y., Wang, C., Liu, Y., Xia, Z., Yuan, S., Chang, H., and Tian, Z.: Large anomalous Hall effect in ferromagnetic Weyl semimetal candidate PrAlGe. APL Mater. 7, 051110 (2019).
5.Tokura, Y., Kawasaki, M., and Nagaosa, N.: Emergent functions of quantum materials. Nat. Phys. 13, 1056 (2017).
6.Huang, S.M., Xu, S.Y., Belopolski, I., Lee, C.C., Chang, G., Wang, B., Alidoust, N., Bian, G., Neupane, M., Zhang, C., and Jia, S.: A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).
7.Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., and Burkett, B.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).
8.Soluyanov, A.A., Gresch, D., Wang, Z., Wu, Q., Troyer, M., Dai, X., and Bernevig, B.A.: Type-II Weyl semimetals. Nature 527, 495 (2015).
9.Lv, B.Q., Weng, H.M., Fu, B.B., Wang, X.P., Miao, H., Ma, J., Richard, P., Huang, X.C., Zhao, L.X., Chen, G.F., and Fang, Z.: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
10.Xu, S.Y., Belopolski, I., Alidoust, N., Neupane, M., Bian, G., Zhang, C., Sankar, R., Chang, G., Yuan, Z., Lee, C.C., and Huang, S.M.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).
11Wang, J., Lian, B., and Zhang, S.C.: Generation of spin currents by magnetic field in 𝒯-and 𝒫-broken materials. SPIN 9, 1940013 (2019). doi:10.1142/S2010324719400137
12.Huang, X., Zhao, L., Long, Y., Wang, P., Chen, D., Yang, Z., Liang, H., Xue, M., Weng, H., Fang, Z., and Dai, X.: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).
13.Son, D.T. and Spivak, B.Z.: Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).
14.Wan, X., Turner, A.M., Vishwanath, A., and Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
15.Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 9, 3342 (2019).
16.Guloy, A.M. and Corbett, J.D.: Syntheses and structures of lanthanum germanide, LaGe2-x, and lanthanum aluminum germanide, LaAlGe: interrelationships among the alpha-ThSi2, alpha-GdSi2, and LaPtSi structure types. Inorg. Chem. 30, 4789 (1991).
17.Hodovanets, H., Eckberg, C.J., Zavalij, P.Y., Kim, H., Lin, W.C., Zic, M., Campbell, D.J., Higgins, J.S., and Paglione, J.: Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe. Phys. Rev. B 98, 245132 (2018).
18Ohring, M.: Why are thin films different from the bulk? In Proc. SPIE 2114, Laser-Induced Damage in Optical Materials: 1993 (28 July 1994); https://doi.org/10.1117/12.180875.
19.Momma, K., and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).
20.Forbes, A.W., Dulal, R.P., Bhattarai, N., Pegg, I.L., and Philip, J.: Experimental realization and magnetotransport properties of half-metallic Fe2Si. J. Appl. Phys. 125, 243902 (2019).
21.Bhattarai, N., Forbes, A.W., Dulal, R.P., Pegg, I.L., and Philip, J.: Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition. J. Mater. Res. 35, 454 (2020).
22.Chen, B., Duan, X., Wang, H., Du, J., Zhou, Y., Xu, C., Zhang, Y., Zhang, L., Wei, M., Xia, Z., and Cao, C.: Large magnetoresistance and superconductivity in α-gallium single crystals. npj Quantum Mater. 3, 40 (2018).
23Ziman, J.M.: Electrons and Phonons, Classics Series (Oxford University Press, Oxford, 2011)
24.Zhang, X., Xiao, Z., Lei, H., Toda, Y., Matsuishi, S., Kamiya, T., Ueda, S., and Hosono, H.: Two-dimensional transition-metal electride Y2C. Chem. Mater. 26, 6638 (2014).
25.Destraz, D., Das, L., Tsirkin, S.S., Xu, Y., Neupert, T., Chang, J., Schilling, A., Grushin, A.G., Kohlbrecher, J., Keller, L., and Puphal, P.: Magnetism and anomalous transport in the Weyl semimetal PrAlGe: possible route to axial gauge fields. npj Quantum Mater. 5, 1 (2020).
26.Sun, S., Wang, Q., Guo, P.J., Liu, K., and Lei, H.: Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys. 18, 082002 (2016).
27.Tafti, F.F., Gibson, Q.D., Kushwaha, S.K., Haldolaarachchige, N., and Cava, R.J.: Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272 (2016).
28.Arajs, S., and Colvin, R.V.: Electrical resistivity due to electron-phonon scattering in yttrium and lutetium. J. Less-Common Met. 4, 572 (1962).
29.Destraz, D., Ilin, K., Siegel, M., Schilling, A., and Chang, J.: Superconducting fluctuations in a Destrazthin NbN film probed by the Hall effect. Phys. Rev. B 95, 224501 (2017).
Type Description Title
WORD
Supplementary materials

Bhattarai et al. supplementary material
Tables S1-S2

 Word (16 KB)
16 KB

Molecular beam epitaxy growth of nonmagnetic Weyl semimetal LaAlGe thin film

  • Niraj Bhattarai (a1) (a2), Andrew W. Forbes (a1) (a2), Rajendra P. Dulal (a3), Ian L. Pegg (a1) (a2) and John Philip (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.