Skip to main content Accessibility help
×
Home

Modifying oxide nanomaterials' properties by hydrogenation

  • Xiaodong Yan (a1), Lihong Tian (a1) (a2), Xinyu Tan (a3), Minjie Zhou (a4), Lei Liu (a5) and Xiaobo Chen (a1)...

Abstract

Nanomaterials have been intensively studied over the past decades with many advantages over traditional bulk materials in many applications. Nanomaterials' properties are largely governed by their chemical compositions, sizes, shapes, dimensions, morphologies and structures, which are primarily controlled with the chemical and/or physical fabrication methods and processes. This prospective will highlight recent progress on the modifications of oxide nanomaterials' properties by hydrogenation, namely heat treatment under hydrogen or hydrogen plasma environment, for various applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modifying oxide nanomaterials' properties by hydrogenation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modifying oxide nanomaterials' properties by hydrogenation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modifying oxide nanomaterials' properties by hydrogenation
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Xiaobo Chen at chenxiaobo@umkc.edu

References

Hide All
1. Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Rev. Mater. Sci. 30, 545 (2000).
2. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).
3. Alivisatos, P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).
4. Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).
5. Cronemeyer, D.C. and Gilleo, M.A.: The optical absorption and photoconductivity of rutile. Phys. Rev. 82, 975 (1951).
6. Cronemeyer, D.C.: Infrared absorption of reduced rutile Ti single crystals. Phys. Rev. 113, 1222 (1959).
7. Sekiya, T., Yagisawa, T., Kamiya, N., Das Mulmi, D., Kurita, S., Murakami, Y., and Kodaira, T.: Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Jpn. 73, 703 (2004).
8. Hasiguti, R.R. and Yagi, E.: Electrical conductivity below 3 K of slightly reduced oxygen-deficient rutile TiO2−x . Phys. Rev. B 49, 7251 (1994).
9. Yagi, E., Hasiguti, R.R., and Aono, M.: Electronic conduction above 4 K of slightly reduced oxygen-deficient rutile TiO2−x . Phys. Rev. B 54, 7945 (1996).
10. Henrich, V.E. and Kurtz, R.L.: Surface electronic structure of TiO2: atomic geometry, ligand coordination, and the effect of adsorbed hydrogen. Phys. Rev. 23, 6280 (1981).
11. Lo, W.J., Chung, Y.W., and Somorjai, G.A.: Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: evidence for the photogeneration of Ti+3 and for its importance in chemisorption. Surf. Sci. 71, 199 (1978).
12. Pan, J.-M., Maschhoff, B.L., Diebold, U., and Madey, T.E.: Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci. Technol. A 10, 2470 (1992).
13. Lazarus, M.S. and Sham, T.K.: X-ray photoelectron spectroscopy (XPS) studies of hydrogen reduced rutile (TiO2−x ) surfaces. Chem. Phys. Lett. 92, 670 (1982).
14. Zhong, Q., Vohs, J.M., and Bonnell, D.A.: Local structure of defects on hydrogen and vacuum reduced TiO2 . J. Am. Ceram. Soc. 76, 1137 (1993).
15. Heller, A., Degani, Y., Johnson, D.W., and Gallagher, P.K.: Controlled suppression or enhancement of the photoactivity of titanium dioxide (rutile) pigment. J. Phys. Chem. 91, 5987 (1987).
16. Liu, H., Ma, H.T., Li, X.Z., Li, W.Z., Wu, M., and Bao, X.H.: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50, 39 (2003).
17. Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., and Li, Y.: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).
18. Chen, X., Liu, L., Liu, Z., Marcus, M.A., Wang, W.-C., Oyler, N.A., Grass, M.E., Mao, B., Glans, P.-A., Yu, P.Y., Guo, J., and Mao, S.S.: Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 3, 1510 (2013).
19. Liu, L., Yu, P.P., Chen, X., Mao, S.S., and Shen, D.Z.: Hydrogenation and disorder in engineered black TiO2 . Phys. Rev. Lett. 111, 065505 (2013).
20. Xia, T. and Chen, X.: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).
21. Lu, H., Zhao, B., Pan, R., Yao, J., Qiu, J., Luo, L., and Liu, Y.: Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 4, 1128 (2014).
22. Wang, W., Ni, Y., Lu, C., and Xu, Z.: Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity. RSC Adv. 2, 8286 (2012).
23. Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C.L., Psaro, R., and Dal Santo, V.: Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012).
24. Jiang, X., Zhang, Y., Jiang, J., Rong, Y., Wang, Y., Wu, Y., and Pan, C.: Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116, 22619 (2012).
25. Zheng, Z., Huang, B., Lu, J., Wang, Z., Qin, X., Zhang, X., Dai, Y., and Whangbo, M.-H.: Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733 (2012).
26. Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., and Jiang, M.: H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444 (2013).
27. Yu, X., Kim, B., and Kim, Y.K.: Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenation-induced surface defects. ACS Catal. 3, 2479 (2013).
28. Lu, Z., Yip, C.-T., Wang, L., Huang, H., and Zhou, L.: Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem 77, 991 (2012).
29. Rekoske, J.E. and Barteau, M.A.: Isothermal reduction kinetics of titanium dioxide-based materials. J. Phys. Chem. B 101, 1113 (1997).
30. Zhang, C., Yu, H., Li, Y., Gao, Y., Zhao, Y., Song, W., Shao, Z., and Yi, B.: Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem 6, 659 (2013).
31. Sun, C., Jia, Y., Yang, X.-H., Yang, H.-G., Yao, X., (Max) Lu, G.Q., Selloni, A., and Smith, S.C.: Hydrogen incorporation and storage in well-defined nnanocrystals of anatase titanium dioxide. J. Phys. Chem. C 115, 25590 (2011).
32. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Muller, J., Spiecker, E., and Schmuki, P.: Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett. 14, 3309 (2014).
33. Qiu, J., Li, S., Gray, E., Liu, H., Gu, Q.-F., Sun, C., Lai, C., Zhao, H., and Zhang, S.: Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J. Phys. Chem. C 118, 8824 (2014).
34. Qiu, J., Lai, C., Gray, E., Li, S., Qiu, S., Strounina, E., Sun, C., Zhao, H., and Zhang, S.: Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 2, 6353 (2014).
35. Wang, W., Lu, C., Ni, Y., Su, M., and Xu, Z.: A new sight on hydrogenation of F and N-F doped {001} facets dominated anatase TiO2 for efficient visible light photocatalyst. Appl. Catal. B 127, 28 (2012).
36. Wang, W., Ni, Y., Lu, C., and Xu, Z.: Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets. Appl. Surf. Sci. 290, 125 (2014).
37. Leshuk, T., Linley, S., and Gu, F.: Hydrogenation processing of TiO2 nanoparticles. Can. J. Chem. Eng. 91, 799 (2013).
38. Leshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R.A., and Gu, F.: Photocatalytic activity of hydrogenated TiO2 . ACS Appl. Mater. Interfaces 5, 1892 (2013).
39. Li, G., Zhang, Z., Peng, H., and Chen, K.: Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Adv. 3, 11507 (2013).
40. Li, S., Qiu, J., Ling, M., Peng, F., Wood, B., and Zhang, S.: Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interfaces 5, 11129 (2013).
41. Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).
42. Barzan, C., Groppo, E., Bordiga, S., and Zecchina, A.: Defect sites in H2-reduced TiO2 convert ethylene to high density polyethylene without activator. ACS Catal. 4, 986 (2014).
43. Liang, Z., Zheng, G., Li, W., Seh, Z.W., Yao, H., Yan, K., Kong, D., and Cui, Y.: Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8, 5249 (2014).
44. Shin, J.-Y., Joo, J.H., Samuelis, D., and Maier, J.: Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543 (2012).
45. Zhu, W.-D., Wang, C.-W., Chen, J.-B., Li, D.-S., Zhou, F., and Zhang, H.-L.: Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology 23, 455204 (2012).
46. Shen, L., Uchaker, E., Zhang, X., and Cao, G.: Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 24, 6502 (2012).
47. Danon, A., Bhattacharyya, K., Vijayan, B.K., Lu, J., Sauter, D.J., Gray, K.A., Stair, P.C., and Weitz, E.: Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal. 2, 45 (2012).
48. Zhang, S., Zhang, S., Peng, B., Wang, H., Yu, H., Wang, H., and Peng, F.: High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem. Commun. 40, 24 (2014).
49. Zeng, L., Song, W., Li, M., Zeng, D., and Xie, C.: Catalytic oxidation of formaldehyde on surface of H−TiO2/H−C−TiO2 without light illumination at room temperature. Appl. Catal. B 147, 490 (2014).
50. Wang, J., Shen, L., Nie, P., Xu, G., Ding, B., Fang, S., Dou, H., and Zhang, X.: Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. J. Mater. Chem. A 2, 9150 (2014).
51. Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., and Mullins, C.B.: Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 134, 3659 (2012).
52. He, H., Yang, K., Wang, N., Luo, F., and Chen, H.: Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect. J. Appl. Phys. 114, 213505 (2013).
53. Wang, D., Zhang, X., Sun, P., Lu, S., Wang, L., Wang, C., and Liu, Y.: Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochim. Acta 130, 290 (2014).
54. Zhu, Y., Liu, D., and Meng, M.: H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chem. Commun. 50, 6049 (2014).
55. Myung, S.-T., Kikuchi, M., Yoon, C.S., Yashiro, H., Kim, S.-J., Sun, Y.-K., and Scrosati, B.: Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6, 2609 (2013).
56. Teng, F., Li, M., Gao, C., Zhang, G., Zhang, P., Wang, Y., Chen, L., and Xie, E.: Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B 148–149, 339 (2014).
57. Yan, Y., Hao, B., Wang, D., Chen, G., Markweg, E., and Albrecht, A., and Schaaf, P.: Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. J. Mater. Chem. A 1, 14507 (2013).
58. Xia, T., Zhang, W., Murowchick, J., Liu, G., and Chen, X.: Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 13, 5289 (2013).
59. Pesci, F.M., Wang, G., Klug, D.R., Li, Y., and Cowan, A.J.: Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 117, 25837 (2013).
60. Zhang, K., Wang, L., Kim, J.K., Ma, M., Veerappan, G., Lee, C.-L., Kong, K.-J., Lee, H., and Park, J.H.: An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 9, 499 (2016).
61. Sinhamahapatra, A., Jeon, J.-P., and Yu, J.-S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).
62. Cai, J., Zhu, Y., Liu, D., Meng, M., Hu, Z., and Jiang, Z.: Synergistic effect of titanate-anatase heterostructure and hydrogenation-induced surface disorder on photocatalytic water splitting. ACS Catal. 5, 1708 (2015).
63. Nguyen-Phan, T.-D., Luo, S., Liu, Z., Gamalski, A.D., Tao, J., Xu, W., Stach, E.A., Polyansky, D.E., Senanayake, S.D., Fujita, E., and Rodriguez, J.A.: Striving toward noble-metal-free photocatalytic water splitting: the hydrogenated-graphene−TiO2 prototype. Chem. Mater. 27, 6282 (2015).
64. Su, T., Yang, Y., Na, Y., Fan, R., Li, L., Wei, L., Yang, B., and Cao, W.: An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 3754 (2015).
65. Cui, L.H., Wang, Y., Shu, X., Zhang, J.F., Yu, C.P., Cui, J.W., Zheng, H.M., Zhang, Y., and Wu, Y.C.: Supercapacitive performance of hydrogenated TiO2 nanotube arrays decorated with nickel oxide Nanoparticles. RSC Adv. 6, 12185 (2016).
66. Cai, J., Wang, Y., Zhu, Y., Wu, M., Zhang, H., Li, X., Jiang, Z., and Meng, M.: In situ formation of disorder-engineered TiO2(B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 7, 24987 (2015).
67. Yang, S., Lin, Y., Song, X., Zhang, P., and Gao, L.: Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl. Mater. Interfaces 7, 17884 (2015).
68. Zheng, J., Liu, Y., Ji, G., Zhang, P., Cao, X., Wang, B., Zhang, C., Zhou, X., Zhu, Y., and Shi, D.: Hydrogenated oxygen-deficient blue anatase as anode for high-performance lithium batteries. ACS Appl. Mater. Interfaces 7, 23431 (2015).
69. Samsudin, E.M., Hamid, S.B.A., Juan, J.C., Basirun, W.J., and Centi, G.: Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci. 370, 380 (2016).
70. Singh, A.P., Kodan, N., Mehta, B.R., Dey, A., and Krishnamurthy, S.: In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties. Mater. Res. Bull. 76, 284 (2016).
71. Zhu, G., Shan, Y., Lin, T., Zhao, W., Xu, J., Tian, Z., Zhang, H., Zheng, C., and Huang, F.: Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705 (2016).
72. Mo, L.-B., Wang, Y., Bai, Y., Xiang, Q.-Y., Li, Q., Yao, W.-Q., Wang, J.-O., Ibrahim, K., Wang, H.-H., Wan, C.-H., and Cao, J.-L.: Hydrogen impurity defects in rutile TiO2 . Sci. Rep. 5, 17634 (2015).
73. Nandasiri, M.I., Shutthanandan, V., Manandhar, S., Schwarz, A.M., Oxenford, L., Kennedy, J.V., Thevuthasan, S., and Henderson, M.A.: Instability of hydrogenated TiO2 . J. Phys. Chem. Lett. 6, 4627 (2015).
74. Wang, N., Yue, J., Chen, L., Qian, Y., and Yang, J.: Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 10348 (2015).
75. Wang, X., Zhang, S., Wang, H., Yu, H., Wang, H., Zhang, S., and Peng, F.: Visible light photoelectrochemical properties of a hydrogenated TiO2 nanorod film and its application in the detection of chemical oxygen demand. RSC Adv. 5, 76315 (2015).
76. Xia, T., Zhang, W., Wang, Z., Zhang, Y., Song, X., Murowchick, J., Battaglia, V., Liu, G., and Chen, X.: Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6, 109 (2014).
77. Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).
78. Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198 (2014).
79. Dong, J., Ullal, R., Han, J., Wei, S., Ouyang, X., Dong, J., and Gao, W.: Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 3, 5285 (2015).
80. Tian, L., Yan, X., Xu, J., Wallenmeyer, P., Murowchick, J.B., Liu, L., and Chen, X.: Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J. Mater. Chem. A 3, 12550 (2015).
81. Xia, T., Cao, Y., Oyler, N.A., Murowchick, J., Liu, L., and Chen, X.: Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl. Mater. Interfaces 7, 10407 (2015).
82. Ren, W., Yan, Y., Zeng, L., Shi, Z., Gong, A., Schaaf, P., Wang, D., Zhao, J., Zou, B., Yu, H., Chen, G., Brown, E.M.B., and Wu, A.: A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv. Healthcare Mater. 4, 1526 (2015).
83. Mou, J., Lin, T., Huang, F., Chen, H., and Shi, J.: Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomater. 84, 13 (2016).
84. Strzhemechny, Y.M., Mosbacker, H.L., Look, D.C., Reynolds, D.C., Litton, C.W., Garces, N.Y., Giles, N.C., Halliburton, L.E., Niki, S., and Brillson, L.J.: Remote hydrogen plasma doping of single crystal ZnO. Appl. Phys. Lett. 84, 2545 (2004).
85. Lu, X., Wang, G., Xie, S., Shi, J., Li, W., Tong, Y., and Li, Y.: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem. Commun. 48, 7717 (2012).
86. Xia, T., Wallenmeyer, P., Anderson, A., Murowchick, J., Liu, L., and Chen, X.: Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Advances 4, 41654 (2014).
87. Myong, S.Y., and Lim, K.S.: Highly stable and textured hydrogenated ZnO thin films. Appl. Phys. Lett. 82, 3026 (2003).
88. Yang, P., Xiao, X., Li, Y., Ding, Y., Qiang, P., Tan, X., Mai, W., Lin, Z., Wu, W., Li, T., Jin, H., Liu, P., Zhou, J., Wong, C.P., and Wang, Z.L.: Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617 (2013).
89. Yu, M., Sun, H., Sun, X., Lu, F., Wang, G., Hu, T., Qiu, H., and Lian, J.: Hierarchical al-doped and hydrogenated ZnO nanowire@MnO2 ultra-thin nanosheet core/shell arrays for high-performance supercapacitor electrode. Int. J. Electrochem. Sci. 8, 2313 (2013).
90. Kim, M.-D., Oh, J.-E., Kim, S.-G., and Yang, W.C.: Hydrogen passivation effect on the yellow–green emission band and bound exciton in n-ZnO. Solid State Commun. 151, 768 (2011).
91. Xue, X., Liu, L., Wang, Z., and Wu, Y.: Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles. J. Appl. Phys. 115, 033902 (2014).
92. Tang, Q., Li, Y., Zhou, Z., Chen, Y., and Chen, Z.: Tuning electronic and magnetic properties of wurtzite ZnO nanosheets by surface hydrogenation. ACS Appl. Mater. Interfaces 2, 2442 (2010).
93. Jiang, D., Wang, W., Zheng, Y., and Zhang, L.: Enhanced photon-to-electron conversion and improved waterresistance of hydrogenated ceria in photocatalytic oxidation at gas-solid interface. Appl. Catal. B: Environ. 191, 86 (2016).
94. Weng, Z., Liu, W., Yin, L.-C., Fang, R., Li, M., Altman, E.I., Fan, Q., Li, F., Cheng, H.-M., and Wang, H.: Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 15, 7704 (2015).
95. Wei, J., Ji, H., Guo, W., Nevidomskyy, A.H., and Natelson, D.: Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nat. Nanotech. 7, 357 (2012).
96. Chippindale, A.M., Dickens, P.G., and Powell, A.V.: Synthesis, characterization, and inelastic neutron scattering study of hydrogen insertion compounds of VO2(rutile). J. Solid State Chem. 93, 526 (1991).
97. Andreev, V., Kapralova, V., and Klimov, V.: Effect of hydrogenation on the metal–semiconductor phase transition in vanadium dioxide thin films. Phys. Solid State 49, 2318 (2007).
98. Wu, C., Feng, F., Feng, J., Dai, J., Peng, L., Zhao, J., Yang, J., Si, C., Wu, Z., and Xie, Y.: Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 133, 13798 (2011).
99. Wang, G., Ling, Y., Wang, H., Yang, X., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 5, 6180 (2012).
100. Li, Y.H., Liu, P.F., Pan, L.F., Wang, H.F., Yang, Z.Z., Zheng, L.R., Hu, P., Zhao, H.J., Gu, L., and Yang, H.G.: Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 6, 8064 (2015).
101. Vasilopoulou, M., Kostis, I., Douvas, A.M., Georgiadou, D.G., Soultati, A., Papadimitropoulos, G., Stathopoulos, N.A., Savaidis, S.S., Argitis, P., and Davazoglou, D.: Vapor-deposited hydrogenated and oxygen-deficient molybdenum oxide thin films for application in organic optoelectronics. Surf. Coat. Tech. 230, 202 (2013).
102. Hou, J., Cheng, H., Yang, C., Takeda, O., and Zhu, H.: Hierarchical carbon quantum dots/hydrogenated-γ-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy 18, 143 (2015).
103. He, M., Wang, Z., Yan, X., Tian, L., Liu, G., and Chen, X.: Hydrogenation effects on the lithium ion battery performance of TiOF2 . J. Power Sources 306, 309 (2016).
104. Yan, X., Tian, L., Murowchick, J., and Chen, X.: Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction. J. Mater. Chem. A 4, 3683 (2016).
105. Weng, S.X., and Chen, X.: A hybrid electrolyzer splits water at 0.8 V at room temperature. Nano Energy 19, 138 (2016).
106. Yan, X., Tian, L., and Chen, X.: Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 300, 336 (2015).
107. Yan, X., Tian, L., He, M., and Chen, X.: Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 15, 6015 (2015).
108. Yan, X., Li, K., Lyu, L., Song, F., He, J., Niu, D., Liu, L., Hu, X., and Chen, X.: From water oxidation to reduction: transformation from Ni x Co3−x O4 nanowires to NiCo/NiCoO x heterostructures. ACS Appl. Mater. Interfaces 8, 3208 (2016).
109. Tian, L., Yan, X., and Chen, X.: Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catalysis 6, 5441 (2016).
110. Yan, X., Tian, L., Li, K., Atkins, S., Zhao, H., Murowchick, J., Liu, L., and Chen, X.: FeNi3/NiFeO x nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces. DOI: 10.1002/admi.201600368.

Modifying oxide nanomaterials' properties by hydrogenation

  • Xiaodong Yan (a1), Lihong Tian (a1) (a2), Xinyu Tan (a3), Minjie Zhou (a4), Lei Liu (a5) and Xiaobo Chen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed