Skip to main content Accessibility help

Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide

  • Abdelrahman Zkria (a1) (a2) (a3), Ariful Haque (a2), Mohamed Egiza (a1), Eslam Abubakr (a1), Koki Murasawa (a1) (a4), Tsuyoshi Yoshitake (a1) and Jagdish Narayan (a2)...


We report on the structural evolution of diamond-like carbon (DLC) films by the nanosecond pulsed laser annealing process. DLC film is coated on cemented carbide (WC-Co) by cathodic arc ion plating, which is then annealed by ArF laser (193 nm, 20 ns) at different laser fluences (0.9–1.7 J/cm2). Upon laser annealing, Raman spectra divulge higher sp3 fractions accompanied by a blue shift in the G-peak position, which indicates the changes of sp2 sites from rings to chains. At higher fluence (>1.2 J/cm2), the film converts into reduced graphene oxide confirmed by its Raman-active vibrational modes: D, G, and 2D.


Corresponding author

Address all correspondence to Abdelrahman Zkria at


Hide All
1.Pierson, H.O.: Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (William Andrew, Noyes Publications, Park Ridge, New Jersy, USA, 2012).
2Robertson, J.: Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 21, 199 (1991).
3.Zkria, A., Abdel-Wahab, F., Katamune, Y., and Yoshitake, T.: Optical and structural characterization of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited via coaxial arc plasma. Curr. Appl. Phys 19, 143148 (2019).
4Silva, S.R.P., Robertson, J., Milne, W.I., and Amaratunga, G.A.J.: Amorphous Carbon: State of the Art (World Scientific, Singapore, 1998).
5Casiraghi, C., Robertson, J., and Ferrari, A.C.: Diamond-like carbon for data and beer storage. Mater. Today 10, 42 (2007).
6Hauert, R.: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991 (2004).
7Milewski, M., Madej, M., Niemczewska-Wójcik, M., and Ozimina, D.: Evaluation of the properties of diamond-like carbon coatings lubricated with ionic liquids. Tribologia 5, 3745 (2017).
8Kowalczyk, J., Milewski, M., Madej, M., and Ozimina, D.: Properties of a tribological system with a diamond-like carbon coating lubricated with environmentally friendly cutting fluid. Tribologia 5, 1926 (2018).
9.Dai, M., Zhou, K., Yuan, Z., Ding, Q., and Fu, Z.: The cutting performance of diamond and DLC-coated cutting tools. Diam. Relat. Mater 9, 17531757 (2000).
10.Saai, A., Svenum, I.H., Kane, P.A., Friis, J., and Berstad, T.: Multi-scale modeling of WC-Co drill bits material with density functional theory and crystal elasticity model. Proc. Mater. Sci. 3, 640 (2014).
11Naragino, H., Egiza, M., Tominaga, A., Murasawa, K., Gonda, H., Sakurai, M., and Yoshitake, T.: Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition. Appl. Phys. A 122(8) (2016).
12Akkerma, Z.L., Efstathiadis, H., and Smith, F.W.: Thermal stability of diamond like carbon films. J. Appl. Phys. 80, 3068 (1996).
13Manikandan, E., Kavitha, G., and Kennedy, J.: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065 (2014).
14Manikandan, E., Kennedy, J., Kavitha, G., Kaviyarasu, K., Maaza, M., Panigrahi, B.K., and Mudali, U.K.: Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141 (2015).
15Ryu, S.G., Gruber, I., Grigoropoulos, C.P., Poulikakos, D., and Moon, S.J.: Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses. Thin Solid Films 520(22), 6724 (2012).
16Trusovas, R., Račiukaitis, G., Niaura, G., Barkauskas, J., Valušis, G., and Pauliukaite, R.: Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Adv. Opt. Mater. 4(1), 3765 (2016).
17Abubakr, E., Zkria, A., Katamune, Y., Ohmagari, S., Imokawa, K., Ikenoue, H., and Yoshitake, T.: Formation of low resistivity layers on singlecrystalline diamond immersed in boric acid by excimer laser irradiation. Diam. Relat. Mater. 95, 166 (2019).
18Narayan, J., Godbole, V., and White, C.: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 (1991).
19.Narayan, J., Bhaumik, A., Sachan, R., Haque, A., Gupta, S., and Pant, P.: Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds. Nanoscale 115, 22382248 (2019).
20Queraltó, A., Pérez del Pino, A., de la Mata, M., Arbiol, J., Tristany, M., Obradors, X., and Puig, T.: Ultrafast epitaxial growth kinetics in functional oxide thin films grown by pulsed laser annealing of chemical solutions. Chem. Mater. 28(17), 6136 (2016).
21.Stock, F., Antoni, F., Diebold, L., Gowda, C.C., Hajjar-Garreau, S., Aubel, D., and Muller, D.: UV laser annealing of diamond-like carbon layers obtained by pulsed laser deposition for optical and photovoltaic applications. Appl. Surface Sci. 464, 562566 (2019).
22Lee, K. and Ki, H.: Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films. Acta Mater. 111, 315320 (2016).
23.Narayan, J., Bhaumik, A., Gupta, S., Haque, A., and Sachan, R.: Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett 6(7), 353364 (2018).
24.Haque, A. and Narayan, J.: Stability of electron field emission in Q-carbon. MRS Commun 8(3), 13431351 (2018).
25.Bhaumik, A., Sachan, R., Gupta, S., and Narayan, J.: Discovery of high-temperature superconductivity (Tc=55 K) in B-doped Q-carbon. ACS Nano 11(12), 1191511922 (2017).
26.Gupta, S., Sachan, R., Bhaumik, A., Pant, P., and Narayan, J.: Undercooling driven growth of Q-carbon, diamond, and graphite. MRS Commun 8, 533540 (2018).
27.Lifshitz, Y.: Hydrogen-free amorphous carbon films: correlation between growth conditions and properties. Diam. Relat. Mater 5, 388400 (1996).
28.Zkria, A., Gima, H., Shaban, M., and Yoshitake, T.: Electrical characteristics of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl. Phys. Express 8, 095101-1095101-3 (2015).
29Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
30Salis, S.R., Gardiner, D.J., Bowden, M., Savage, J., and Rodway, D.: Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm. Diam. Relat. Mater. 5, 589 (1996).
31Yan, J., Zhang, Y., Kim, P., and Pinczuk, A.: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).
32Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I., and Kalish, R.: Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diam. Relat. Mater. 5, 433 (1996).
33.Ferrari, A.C.: Determination of bonding in diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater 11, 10531061 (2002).
34.Anders, S., Ager, J.W. III, Pharr, G.M., Tsui, T.Y., and Brown, I.G.: Heat treatment of cathodic arc deposited amorphous hard carbon films. Thin Solid Films 308, 186190 (1997).
35.Narayan, J. and Bhaumik, A.: Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett 4, 118126 (2016).
36Lin-Vien, D., Colthurp, N.B., Fateley, W.G., and Grasselli, J.G.: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, New York, 1991).
37.Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., and Robertson, J.: Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett 93(18), 185503-1185503-4 (2004).
38.Ferrari, A., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K., Roth, S., and Geim, A.K.: Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).
39.Haque, A., Abdullah-Al Mamun, M., Taufique, M.F.N., Karnati, P., and Ghosh, K.: Temperature dependent electrical transport properties of high carrier mobility reduced graphene oxide thin film devices. IEEE Trans. Semicond. Manuf 31(4), 535544 (2018).
40.Xu, H., Zhang, Z., Shi, R., Liu, H., Wang, Z., Wang, S., and Peng, L.-M.: Batch-fabricated high-performance graphene Hall elements. Sci. Rep 3, 1207-11207-8 (2013).
41.Bhaumik, A., Haque, A., Taufique, M.F.N., Karnati, P., Patel, R., Nath, M., and Ghosh, K.: Reduced graphene oxide thin films with very large charge carrier mobility using pulsed laser deposition. J. Mater. Sci. Eng 6(4), 364-1364-11 (2017).
42.Tamor, M.A. and Vassell, W.C.: Raman ‘fingerprinting’ of amorphous carbon films. J. Appl. Phys 76(6), 38233830 (1994).

Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Zkria et al. supplementary material
Zkria et al. supplementary material 1

 Word (537 KB)
537 KB

Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide

  • Abdelrahman Zkria (a1) (a2) (a3), Ariful Haque (a2), Mohamed Egiza (a1), Eslam Abubakr (a1), Koki Murasawa (a1) (a4), Tsuyoshi Yoshitake (a1) and Jagdish Narayan (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.