Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T03:01:27.129Z Has data issue: false hasContentIssue false

Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2

Published online by Cambridge University Press:  25 January 2018

Sowbaranigha Chinnusamy
Affiliation:
Department of Biomedical, Chemical, and Materials Engineering, San Jose State University, 1 Washington Square, San Jose, California 95112, USA
Ravneet Kaur
Affiliation:
Department of Biomedical, Chemical, and Materials Engineering, San Jose State University, 1 Washington Square, San Jose, California 95112, USA
Anuja Bokare
Affiliation:
Department of Biomedical, Chemical, and Materials Engineering, San Jose State University, 1 Washington Square, San Jose, California 95112, USA
Folarin Erogbogbo*
Affiliation:
Department of Biomedical, Chemical, and Materials Engineering, San Jose State University, 1 Washington Square, San Jose, California 95112, USA
*
*Address all correspondence to Folarin Erogbogbo at folarin.erogbogbo@sjsu.edu
Get access

Abstract

Different sized graphene quantum dots (GQDs) have been synthesized by an inexpensive wet chemical method using bird charcoal as a precursor. Obtained GQDs found to have luminescence and visible light absorption. These GQDs are further coupled with titanium dioxide (TiO2) to form TiO2–GQDs nanocomposites. GQD nanostructures exhibit band gap tunability and have the potential to enhance the photoabsorption in TiO2. The hybrid combination of the nanomaterials decrease the recombination of charge carriers, increase charge carrier mobility, and improve the overall photoconversion efficiency. The composites exhibit higher photocatalytic activity and rate constants value than pure TiO2.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Song, C.: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 232 (2006).Google Scholar
2. Alharbi, F.H. and Kais, S.: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 10731089 (2015).CrossRefGoogle Scholar
3. Resasco, J., Zhang, H., Kornienko, N., Becknell, N., Lee, H., Guo, J., Briseno, A., and Yang, P.: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 8088 (2016).Google Scholar
4. Guo, Q., Zhou, C., Ma, Z., Ren, Z., Fan, H., and Yang, X.: Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 37013730 (2016).CrossRefGoogle ScholarPubMed
5. Yang, L., Yin, D., Shen, Y., Yang, M., Li, X., Han, X., Jiang, X., and Zhao, B.: Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 19, 1873118738 (2017).Google Scholar
6. Mendizabal, F., Mera-Adasme, R., Xu, W.-H., and Sundholm, D.: Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Adv. 7, 742677742684 (2017).Google Scholar
7. Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., and Yin, H.: Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11, 737742 (2013).Google Scholar
8. Zhang, D., Xie, F., Lin, P., and Choy, W.C.H.: Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 17401747 (2013).CrossRefGoogle ScholarPubMed
9. Suave, J., Amorim, S.M., Ângelo, J., Andrade, L., Mendes, A., and Moreira, R.F.P.M.: TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. Chem. 348, 326336 (2017).Google Scholar
10. Tian, H., Shen, K., Hu, X., Qiao, L., and Zheng, W.: N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J. Alloys Compd. 691, 369377 (2017).Google Scholar
11. Pan, D., Jiao, J., Li, Z., Guo, Y., Feng, C., Liu, Y., Wang, L., and Wu, M.: Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 3, 24052413 (2015).Google Scholar
12. Long, R., Casanova, D., Fang, W-H, and Prezhdo, O.V.: Donor–acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding. J. Am. Chem. Soc. 139, 26192629 (2017).Google Scholar
13. Williams, K.J., Nelson, C.A., Yan, X., Li, L.-S., and Zhu, X.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 13881394 (2013).Google Scholar
14. Fernando, K.A.S., Sahu, S., Liu, Y., Lewis, W.K., Guliants, E.A., Jafariyan, A., Wang, P., Bunker, C., and Sun, Y.P.: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 83638376 (2015).Google Scholar
15. Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L., Zhan, X., Gao, G., Vithayathil, S., Kaipparettu, B., Marti, A., Hayashi, T., Zhu, J., and Ajayan, P.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844849 (2012).Google Scholar
16. Ye, R., Xiang, C., Lin, J., Peng, Z., Huang, K., Yan, Z., Cook, N., Samuel, E., Hwang, C., Ruan, G., Ceriotti, G., Rajji, A., Marti, A., and Tour, J.: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). doi: 10.1038/ncomms3943.Google Scholar
17. Lee, J.G., Kim, D.Y., Park, J.J., Cha, Y.H., Yoon, J.Y., Jeon, H.S., Min, B.K., Swihart, M.T., Jin, S., Deyab, S., and Yoon, S.: Graphene–titania hybrid photoanodes by supersonic kinetic spraying for solar water splitting. J. Am. Ceram. Soc. 11, 36603668 (2014).Google Scholar
18. Gobi, N., Vijaykumar, D., Keles, O., and Erogbogbo, F.: Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2, 43564362 (2017).Google Scholar
19. Yuan, B., Sun, X., Yan, J., Xie, Z., Chen, P., and Zhou, S.: C96H30 tailored single-layer and single-crystalline graphene quantum dots. Phys. Chem. Chem. Phys.. 18, 2500225009 (2016).CrossRefGoogle ScholarPubMed
20. Xie, J.D., Lai, G.-W., and Huq, M.M.: Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diam. Relat. Mater. 79, 112118 (2017).Google Scholar
21. Fan, T., Zeng, W., Tang, W., Yuan, C., Tong, S., Cai, K., Liu, Y., Huang, W., Min, Y., and Epstein, A.: Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett. 10, 55 (2015). doi: 10.1186/s11671-015-0783-9.Google Scholar
22. Lin, L., Ron, M., Lu, S., Song, X., Zhong, Y., Yan, J., Wang, Y., and Chen, X.: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7, 18721878 (2015).CrossRefGoogle ScholarPubMed
23. Zhang, F., Liu, F., Wang, C., Xin, X., Liu, J., Guo, S., and Zhang, J.: Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl. Mater. Interfaces 8, 21042110 (2016).Google Scholar
24. Shen, K., Xue, X., Wang, X., Hu, X., Tian, H., and Zheng, W.: One-step synthesis of band-tunable N, S co-doped commercial TiO2/graphene quantum dots composites with enhanced photocatalytic activity. RSC Adv. 7, 2331923327 (2017).CrossRefGoogle Scholar
25. Kim, S., Seo, J.K., Park, J.H., Song, Y., Meng, Y.S., and Heller, N.J.: White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479485 (2017).Google Scholar
26. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., Lin, X., and Chen, G.: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 47384743 (2012).Google Scholar
27. Gan, Z., Xu, H., and Hao, Y.: Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 77947807 (2016).Google Scholar
28. Teng, C.Y., Nguyen, B.S., Yeh, T.F., Lee, Y.L., Chen, S.J., and Teng, H.: Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale 9, 82568265 (2017).Google Scholar
29. Kumar, G., Thupakula, U., Kanti Sarkar, P., and Acharya, S.: Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv. 5, 2771127716 (2015).Google Scholar
30. Ola, O., and Maroto-Valer, M.M.: Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 24, 1642 (2015).Google Scholar