Skip to main content Accessibility help
×
Home

In situ small-angle x-ray scattering analysis of improved catalyst—support interactions through nitrogen modification

  • Kevin N. Wood (a1), Steven T. Christensen (a2), Svitlana Pylypenko (a1), Tim S. Olson (a2), Arrelaine A. Dameron (a2), Katherine E. Hurst (a2), Huyen N. Dinh (a2), Thomas Gennett (a2) and Ryan O'Hayre (a1)...

Abstract

In situ small-angle x-ray scattering (SAXS) is used to investigate the electrochemical durability of Pt-Metal (Pt-M) catalysts sputtered onto nitrogen-modified high surface area carbon powder. The results demonstrate that nitrogen modification promotes catalyst durability through reduction of nanoparticle dissolution and coarsening. Although particle sizes of Pt-M on high surface area carbon supports can be difficult to determine with transmission electron microscopy (TEM), a novel SAXS method has been employed to calculate particle size. SAXS analysis shows that the Pt-M nanoparticle size distribution remained stable for 3000 electrochemical cycles after nitrogen modification, whereas the unmodified support material leads to Pt-M nanoparticle instabilities. These results for industrial-relevant catalyst/support architectures underscore the potential of nitrogen-modified carbon support structures for enhanced Pt-M catalyst durability.

Copyright

Corresponding author

Address all correspondence to Ryan O'Hayre atrohayre@mines.edu

References

Hide All
1.Xu, X. and Ye, S.: High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J. Power Sources 172, 145 (2007).
2.Shyam, B., Arruda, T.M., Murkjee, S., and Ramaker, D.E.: Effect of RuOxHy island size on PtRu particle aging in methanol. J. Phys. Chem. C 113, 19713 (2009).
3.Avasarala, B., Moore, R., and Haldar, P.: Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim. Acta 55, 4765 (2010).
4.Choo, H.S., Kinumoto, T., Leong, S.K., Iriyama, Y., Abe, T., and Ogumi, Z.: Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc. 154, B1017, (2007).
5.Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K.I., and Iwashita, N.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews. 107, 3904 (2007).
6.Ye, S., Vijh, A.K., and Dao, L.H.: A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. J. Electrochem. Soc. 143, L7 (1996).
7.Roy, S.C., Christensen, P.A., Hamnett, A., Thomas, K.M., and Trapp, V.: Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality. J. Electrochem. Soc. 143, 3073 (1996).
8.Zhou, Y.K., Pasquarelli, R., Holme, T., Berry, J., Ginley, D., and O'Hayre, R.: Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems. J. Mater. Chem. 19, 7830 (2009).
9.Chen, Y.G., Wang, J.J., Liu, H., Li, R.Y., Sun, X.L., Ye, S., and Knights, S.: Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem. Commun. 11, 2071 (2009).
10.Maldonado, S. and Stevenson, K.J.: Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109, 4707 (2005).
11.Ye, S., Vijh, K.A., and Dao, L.H.: A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam. J. Electrochem. Soc. 144, 90 (1997).
12.Maiyalagan, T., Viswanathan, B., and Varadaraju, U.V.: Nitrogen containing carbon nanotubes as supports for Pt – Alternate anodes for fuel cell applications. Electrochem. Comm. 7, 905 (2005).
13.Holme, T., Zhou, Y.K., Pasquarelli, R., and O'Hayre, R.: First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 12, 9461 (2010).
14.Groves, M.N., Chan, A.S.W., Malardier-Jugroot, C., and Jugroot, M.: Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem. Phys. Lett. 481, 214 (2009).
15.Pylypenko, S., Queen, A., Olson, T.S., Dameron, A., O'Neill, K., Neyerlin, K.C., Pivovar, B., Dinh, H.N., Ginley, D.S., Gennett, T., and O'Hayre, R.: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. I. Investigation of structural and compositional modification of highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115, 13667 (2011).
16.Pylypenko, S., Queen, A., Olson, T.S., Dameron, A., O'Neill, K., Neyerlin, K.C., Pivovar, B., Dinh, H.N., Ginley, D.S., Gennett, T., and O'Hayre, R.: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. II. Investigation of durability of Pt–Ru nanoparticles supported on highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115, 13676 (2011).
17.Dameron, A., Olson, T.S., Christensen, S.T., Leisch, J.E., Hurst, K.E., Pylypenko, S., Bult, J.B., Ginley, D.S., O'Hayre, R., Dinh, H.N., and Gennett, T.: Pt–Ru alloyed fuel cell catalysts sputtered from a single alloyed target. ACS Catal. 1, 1307 (2011).
18.Yu, C., Koh, S., Leisch, J., Toney, M., and Strasser, P.: Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle x-ray scattering (ASAXS). Faraday Discuss. 140, 283 (2008).
19.Yu, C.: Structural dynamics of Pt and Pt alloy nanoparticle probed by x-ray scattering techniques. Ph.D. Thesis, University of Houston, August 2010.
20.Ilavsky, J. and Jemian, P.R.: Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).
21.Allen, A.J., Krueger, S., Skandan, G., Long, G.G., Hahn, H., Kerch, H.M., Parker, J.C., and Ali, M.N.: Microstructural evolution during the sintering of nanostructured ceramic oxides. J. Am. Ceram. Soc. 79, 1201 (1996).
22.Gontard, L.C., Dunin-Borkowski, R.E., Ozkaya, D., Hyde, T., Midgley, P.A., and Ash, P.: Crystal size and shape analysis of Pt nanoparticles in two and three dimensions. J. Phys. Conf. Ser. 26, 367 (2006).
23.Hyde, T.: Crystallite size analysis of supported platinum catalysts by XRD. Platinum Met. Rev. 52, 129 (2008).
24.Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z., and O'Hayre, R.: Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3, 1437 (2010).
Type Description Title
WORD
Supplementary materials

Wood et al. supplementary material
Supplementary data

 Word (284 KB)
284 KB

In situ small-angle x-ray scattering analysis of improved catalyst—support interactions through nitrogen modification

  • Kevin N. Wood (a1), Steven T. Christensen (a2), Svitlana Pylypenko (a1), Tim S. Olson (a2), Arrelaine A. Dameron (a2), Katherine E. Hurst (a2), Huyen N. Dinh (a2), Thomas Gennett (a2) and Ryan O'Hayre (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed