Skip to main content Accessibility help

Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals

  • Wei Cui (a1) (a2), Shaogang Wang (a1) (a2), Rui Yang (a1) (a2) and Xing Zhang (a1) (a2)


In this study, Mg-substituted tricalcium phosphate (Mg-TCP) nanoparticles were synthesized by hydrothermal reactions of Mg-calcite mesocrystals from echinoderm skeletons. Following the biomineralization of echinoderms, Mg-calcite powder was synthesized via the solid-state transition of Mg-amorphous calcium carbonate prepared by a wet-chemical precipitation method, which can also be used to fabricate Mg-TCP. We illustrated that Mg-calcite with a certain level of Mg substitution led to the formation of Mg-TCP through the ion-exchange reactions in the hydrothermal system. Therefore, this study provides a new pathway for the synthesis of Mg-TCP nanoparticles.


Corresponding author

Address all correspondence to Xing Zhang at


Hide All
1.Seto, J., Ma, Y., Davis, S.A., Meldrum, F., Gourrier, A., Kim, Y.-Y., Schilde, U., Sztucki, M., Burghammer, M., Maltsev, S., Jager, C., and Colfen, H.: Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc. Natl Acad. Sci. USA 109, 3699 (2012).
2.Cao, L., Li, X., Zhou, X., Li, Y., Vecchio, K.S., Yang, L., Cui, W., Yang, R., Zhu, Y., Guo, Z., and Zhang, X.: Lightweight open-cell scaffolds from sea urchin spines with superior material properties for bone defect repair. ACS Appl. Mater. Inter. 9, 9862 (2017).
3.Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L.: Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161 (2004).
4.Killian, C.E., Metzler, R.A., Gong, Y.U., Olson, I.C., Aizenberg, J., Politi, Y., Wilt, F.H., Scholl, A., Young, A., Doran, A., Kunz, M., Tamura, N., Coppersmith, S.N., and Gilbert, P.U.: Mechanism of calcite co-orientation in the sea urchin tooth. J. Am. Chem. Soc. 131, 18404 (2009).
5.Ma, Y., Aichmayer, B., Paris, O., Fratzl, P., Meibom, A., Metzler, R.A., Politi, Y., Addadi, L., Gilbert, P.U., and Weiner, S.: The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution. Proc. Natl Acad. Sci. USA 106, 6048 (2009).
6.Oaki, Y. and Imai, H.: Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2, 66 (2006).
7.Cai, Y. and Tang, R.: Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 18, 3775 (2008).
8.Amini, S., Masic, A., Bertinetti, L., Teguh, J.S., Herrin, J.S., Zhu, X., Su, H., and Miserez, A.: Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nat. Commun. 5, 3187 (2014).
9.Song, R.Q. and Colfen, H.: Mesocrystals-ordered nanoparticle superstructures. Adv. Mater. 22, 1301 (2010).
10.Hu, J., Shi, Y.N., Sauvage, X., Sha, G., and Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).
11.Zhou, X., Li, X.Y., and Lu, K.: Enhanced thermal stability of nanograined metals below a critical grain size. Science 360, 526 (2018).
12.Colfen, H. and Antonietti, M.: Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576 (2005).
13.Gebauer, D., Volkel, A., and Colfen, H.: Stable prenucleation calcium carbonate clusters. Science 322, 1819 (2008).
14.Pouget, E.M., Bomans, P.H., Goos, J.A., Frederik, P.M., de With, G., and Sommerdijk, N.A.: The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455 (2009).
15.Raiteri, P. and Gale, J.D.: Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623 (2010).
16.Ellies, L.G., Nelson, D.G.A., and Featherstone, J.D.B.: Crystallographic changes in calcium phosphates during plasma-spraying. Biomaterials 13, 313 (1992).
17.Yu, T., Liu, Q., Jiang, T., Wang, X., Yang, Y., and Kang, Y.: Channeled β-TCP scaffolds promoted vascularization and bone augmentation in mandible of beagle dogs. Adv. Funct. Mater. 26, 6719 (2016).
18.Dorozhkin, S.V.: Calcium orthophosphates in nature, biology and medicine. Materials 2, 399 (2009).
19.Kivrak, N. and Tas, A.C.: Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 81, 2245 (1998).
20.Gibson, I.R., Rehman, I., Best, S.M., and Bonfield, W.: Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 11, 799 (2000).
21.Vecchio, K.S., Zhang, X., Massie, J.B., Wang, M., and Kim, C.W.: Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 3, 785 (2007).
22.Roy, D.M. and Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247, 220 (1974).
23.Clarke, S.A., Walsh, P., and Maggs, C.A.: Designs from the deep: marine organisms for bone tissue engineering. Biotechnol. Adv. 29, 610 (2011).
24.Zhang, L. and Wang, S.G.: Correlation of materials property and performance with internal structures evolvement revealed by laboratory X-ray tomography. Materials 11, 1795 (2018).
25.Lemos, A.F., Rocha, J.H.G., and Quaresma, S.S.F.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc. 26, 3639 (2006).
26.Marchegiani, F., Cibej, E., and Vergni, P.: Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions. J. Cryst. Growth 311, 4219 (2009).
27.Maiti, A., Small, W., Lewicki, J.P., Weisgraber, T.H., Duoss, E.B., Chinn, S.C., Pearson, M.A., Spadaccini, C.M., Maxwell, R.S., and Wilson, T.S.: 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Sci. Rep. 6, 24871 (2016).
28.Tomono, H., Nada, H., Zhu, F., Sakamoto, T., Nishimura, T., and Kato, T.: Effects of magnesium ions and water molecules on the structure of amorphous calcium carbonate: a molecular dynamics study. J. Phys. Chem. B 117, 14849 (2013).
29.Ihli, J., Wong, W.C., Noel, E.H., Kim, Y., Kulak, A.N., Christenson, H.K., Duer, M.J., and Meldrum, F.C.: Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 10, 4169 (2014).
30.Ding, H., Pan, H., Xu, X., and Tang, R.: Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition. Cryst. Growth Des. 14, 763 (2014).
31.Sun, W., Jayaraman, S., Chen, W., Persson, K.A., and Ceder, G.: Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl Acad. Sci. USA 112, 3199 (2015).
32.Matsunaga, K.: First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. J. Chem. Phys. 128, 245101 (2008).
33.Grigg, A.T., Mee, M., Mallinson, P.M., Fong, S.K., Gan, Z., Dupree, R., and Holland, D.: Cation substitution in beta-tricalcium phosphate investigated using multi-nuclear, solid-state NMR. J. Solid State Chem. 212, 227 (2014).
34.Cui, W., Song, Q., Su, H., Yang, Z., Yang, R., Li, N., and Zhang, X.: The synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals. J. Mater. Sci. Technol. (2019).
Type Description Title
Supplementary materials

Cui et al. supplementary material
Cui et al. supplementary material

 Word (25.3 MB)
25.3 MB

Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals

  • Wei Cui (a1) (a2), Shaogang Wang (a1) (a2), Rui Yang (a1) (a2) and Xing Zhang (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed