Skip to main content Accessibility help
×
Home

Guidelines in predicting phase formation of high-entropy alloys

  • Y. Zhang (a1), Z.P. Lu (a1), S.G. Ma (a2), P.K. Liaw (a3), Z. Tang (a3), Y.Q. Cheng (a4) and M.C. Gao (a5)...

Abstract

With multiple elements mixed at equal or near-equal molar ratios, the emerging, high-entropy alloys (HEAs), also named multi-principal elements alloys (MEAs), have posed tremendous challenges to materials scientists and physicists, e.g., how to predict high-entropy phase formation and design alloys. In this paper, we propose some guidelines in predicting phase formation, using thermodynamic and topological parameters of the constituent elements. This guideline together with the existing ones will pave the way toward the composition design of MEAs and HEAs, as well as property optimization based on the composition–structure–property relationship.

Copyright

Corresponding author

Address all correspondence to Y. Zhang atdrzhangy@ustb.edu.cn

References

Hide All
1.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
2.Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
3.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213 (2004).
4.Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicoponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).
5.Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. J. Miner. Met. Mater. Soc. 64, 830 (2012).
6.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
7.Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).
8.Guo, W., Dmowski, W., Noh, J-Y., Rack, P., Liaw, P.K., and Egami, T.: Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall. Mater. Trans. A 44, 1994 (2013).
9.Dubois, J.M.: Complex metallic alloys: clarity through complexity. Nat. Mater. 9, 287 (2010).
10.Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., and Sakuma, T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464 (2003).
11.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
12.Kuznetsov, A.V., Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A., and Senkov, O.N.: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng. A 533, 107 (2012).
13.Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).
14.Zhang, Y., Zuo, T.T., Cheng, Y.Q., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
15.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
16.Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).
17.Ranganathan, S.: Alloyed pleasures: multimetallic cocktails. Curr. Sci. 85, 1404 (2003).
18.Greer, A.L.: Materials science-confusion by design. Nature 366, 303 (1993).
19.Hume-Rothery, W.: Phase Stability in Metals and Alloys (McGraw-Hill, New York, 1967).
20.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
21.Fultz, B.: Vibrational thermodynamics of materials. Prog. Mater. Sci. 55, 247 (2010).
22.Delaire, O., Swan-Wood, T., and Fultz, B.: Negative entropy of mixing for vanadium-platinum solutions. Phys. Rev. Lett. 93, 185704 (2004).
23.Martyushev, L.M. and Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1 (2006).
24.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
25.Cunliffe, A., Plummer, J., Figueroa, I., and Todd, I.: Glass formation in a high entropy alloy system by design. Intermetallics 23, 204 (2012).
26.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
27.Wang, F.J., Zhang, Y., and Chen, G.L.: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).
28.Zhang, Y., Zhou, Y.J., Hui, X.D., Wang, M.L., and Chen, G.L.: Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G – Phys. Mech. Astron. 51, 427 (2008).
29.Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).
30.Ma, S.G., Zhang, S.F., Gao, M.C., Liaw, P.K., and Zhang, Y.: A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. J. Miner. Met. Mater. Soc., 65, 1751 (2013).
31.Tang, Z., Gao, M.C., Diao, H.Y., Yang, T.F., Liu, J.P., Zuo, T.T., Zhang, Y., Lu, Z.P., Cheng, Y.Q., Zhang, Y.W., Dahmen, K.A., Liaw, P.K., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. J. Miner. Met. Mater. Soc., 65, 1848 (2013).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed