Skip to main content Accessibility help
×
Home

Formation of a hexagonal closed-packed phase in Al0.5CoCrFeNi high entropy alloy

  • J. Wang (a1), Y. Zhang (a1), S.Z. Niu (a1), W.Y. Wang (a1), H.C. Kou (a1), J.S. Li (a1), S.Q. Wang (a2) and E. Beaugnon (a3) (a4)...

Abstract

We report that a hexagonal closed-packed (HCP) phase with high cobalt content precipitates in Al0.5CoCrFeNi high entropy alloy (HEA) after 650 °C/8 h heat-treatment. The precipitate with the shape of plate is completely located at the interdendritic region. Results of electron diffraction and high resolution transmission electron microscopy show that the HCP phase was transformed from the body-centered cubic phase through a simple shear and the two phase obey an orientation relationship. The thermodynamic stability of Al0.5CoCrFeNi HEA should be carefully reevaluated, especially at the vulnerable temperature.

Copyright

Corresponding author

Address all correspondence to J. Wang at nwpuwj@nwpu.edu.cn and J.S. Li at ljsh@nwpu.edu.cn

References

Hide All
1. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).
2. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
3. Murty, B.S., Yeh, J.W., and Ranganathan, S.: Chapter 2-High-Entropy Alloys: Basic Concepts. High-Entropy Alloys (Elsevier Inc., Amsterdam, 2014).
4. Lin, C.M. and Tsai, H.L.: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics, 19, 288 (2011).
5. Lu, Y.P., Gao, X.Z., Jiang, L., Chen, Z.N., Wang, T., Jie, J.C., and Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater.. 124, 143 (2017).
6. Kao, Y.F., Chen, T.J., Chen, S.K., and Yeh, J.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).
7. Miracle, D.B.: Critical Assessment 14: High entropy alloys and their development as structural materials. J. Mater. Sci. Technol. 31, 1142 (2015).
8. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Microstructural control and properties optimization of high-entropy alloys. Adv. Eng. Mater. 6, 299 (2004).
9. Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).
10. Choudhuri, D., Alam, T., Borkar, T., Gwalani, B., Mantri, A.S., Srinivasan, S.G., Gibson, M.A., and Banerjee, R.: Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr. Mater. 100, 3639 (2015).
11. Otto, F., Dlouhý, A., Pradeep, K. G., Kubenov, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater.. 112, 40 (2016).
12. He, F., Wang, Z., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).
13. Rao, J.C., Diao, H.Y., Ocelik, V., Vainchtein, D., Zhang, C., Kuo, C., Tang, Z., Guo, W., Poplawsky, J.D., Zhou, Y., Liaw, P.K., and De Hosson, J.T.M.: Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater.. 131, 206 (2017).
14. Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
15. An, Z.N., Jia, H.L., Wu, Y.Y., Rack, P.D., Patchen, A.D., Liu, Y., Ren, Y., Li, N., and Liaw, P.K.: Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition. Mater. Res. Lett. 3, 203 (2015).
16. Ren, B., Liu, Z.X., Li, D.M., Shi, L., Cai, B., and Wang, M.X.: Corrigendum to “Effect of elemental interaction on microstructure of CuCrFeNiMn high-entropy alloy system”. J. Alloys Compd. 503, 538 (2010).
17. Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., and Li, T.: A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).
18. Wang, W.R., Wang, W.L., Wang, S.C., and Yeh, J.W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).
19. Chou, H.P., Chang, Y.S., Chen, S.K., and Yeh, J.W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Mater. Sci. Eng. B 163, 184 (2009).
20. Wang, J., Niu, S.Z., Guo, T., Kou, H.C., and Li, J.S.: The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. J. Alloys Compd. 710, 144 (2017).
21. Niu, S.Z., Kou, H.C., Guo, T., Zhang, Y., Wang, J., and Li, J.S.: Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy Mater . Sci. Eng. A 671, 82 (2016).
22. Wang, W., Wang, W., and Yeh, J.W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).
23. Zhang, C., Wu, G.F., and Dai, P.Q.: Phase transformation and aging behavior of Al0.5CoCrFeNiSi0.2 high-entropy alloy. JMEPEG. 24, 1918 (2015).
24. Zhang, F., Zhang, C., Chen, S.L., Zhu, J., Cao, W.S., and Kattner, U.R.: An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1 (2014).
25. Li, Z., Mao, H.H., Korzhavyi, P.A., and Selleby, M.N.: Thermodynamic re-assessment of the Co-Cr system supported by first-principles calculations. Calphad 52, 1 (2016).
26. Welk, B.A., Williams, R., Viswanathan, G.B., Gibson, M.A., Liaw, P.K., and Fraser, H.L.: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134, 193 (2013).
27. Fan, Q.C., Li, B.S., and Zhang, Y.: The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites. Mater. Sci. Eng. A 598, 244 (2014).
28. Burgers, W.G.: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561 (1934).
29. Ojha, A. and Sehitoglu, H.: Critical stress for the bcc-hcp martensite nucleation in Ti-6.25at.% Ta and Ti-6.25at.%Nb alloys. Comput. Mater. Sci. 111, 157 (2016).
30. Yoshinaga, H., Morozumi, S., Portevin, A. and Chatelier, L.: A Portevin-Le Chatelier effect expected from solute atmosphere dragging. Mag. A. 23, 1351 (1971).

Formation of a hexagonal closed-packed phase in Al0.5CoCrFeNi high entropy alloy

  • J. Wang (a1), Y. Zhang (a1), S.Z. Niu (a1), W.Y. Wang (a1), H.C. Kou (a1), J.S. Li (a1), S.Q. Wang (a2) and E. Beaugnon (a3) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed