Skip to main content Accessibility help
×
×
Home

Fluorescence loss of commercial aqueous quantum dots during preparation for bioimaging

  • Kil Ho Lee (a1), Thomas Porter (a1) and Jessica O. Winter (a1) (a2)

Abstract

Quantum dots (QDs) are increasingly employed in biologic imaging applications; however, anecdotal reports suggest difficulties in QD bioconjugation. Further, the stability of commercial QDs during bioconjugation has not been systematically evaluated. Thus, we examined fluorescence losses resulting from aggregation and declining photoluminescence quantum yield (QY) for commercial CdSe/ZnS QD products from four different vendors. QDs were most stable in the aqueous media in which they were supplied. The largest QY declines were observed during centrifugal filtration, whereas the largest declines in colloidal stability occurred in 2-(N-morpholino)ethanesulfonic acid (MES) buffer. These results enable optimization of bioconjugation protocols.

Copyright

Corresponding author

Address all correspondence to Jessica O. Winter at winter.63@osu.edu

Footnotes

Hide All
*

These authors have contributed equally to this work.

Footnotes

References

Hide All
1.Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).
2.Chan, W.C. and Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).
3.van Sark, W.G., Frederix, P.L.T.M., Bol, A.A., Gerritsen, H.C., and Meijerink, A.: Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3, 871 (2002).
4.Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F., and Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41 (2003).
5.Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).
6.Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K.: On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48, 669 (2004).
7.Waalkes, M.P.: Cadmium carcinogenesis. Mutat. Res. 533, 107 (2003).
8.Ye, L., Yong, K.-T., Liu, L., Roy, I., Hu, R., Zhu, J., Cai, H., Law, W.-C., Liu, J., Wang, K., Liu, J., Liu, Y., Hu, Y., Zhang, X., Swihart, M.T., and Prasad, P.N.: A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nano 7, 453 (2012).
9.Grim, J.Q., Manna, L., and Moreels, I.: A sustainable future for photonic colloidal nanocrystals. Chem. Soc. Rev. 44, 5897 (2015).
10.Pradhan, N. and Peng, X.G.: Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 129, 3339 (2007).
11.Banerjee, A., Grazon, C., Nadal, B., Pons, T., Krishnan, Y., and Dubertret, B.: Fast, efficient, and stable conjugation of multiple DNA strands on Colloidal Quantum Dots. Bioconjug. Chem. 26, 1582 (2015).
12.Aldana, J., Wang, Y.A., and Peng, X.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).
13.Zhang, Y., Chen, Y.S., Westerhoff, P., and Crittenden, J.C.: Stability and removal of water soluble CdTe quantum dots in water. Environ. Sci. Technol. 42, 321 (2008).
14.Anderson, N.C., Hendricks, M.P., Choi, J.J., and Owen, J.S.: Ligand exchange and the stoichiometry of metal Chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536 (2013).
15.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435 (2005).
16.Hermanson, G.T.: Bioconjugate Techniques (Academic Press, Amsterdam, 2013).
17.Hermanson, G.T.: Bioconjugate Techniques (Academic Press, San Diego, 1996).
18.Kubin, R.F. and Fletcher, A.N.: Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455 (1982).
19.Velapoldi, R.A.: Considerations on organic compounds in solution and inorganic ions in glasses as fluorescent standard reference materials. National Bureau of Standards Special Publication 378, 231 (1973).
20.Wu, Y., Campos, S.K., Lopez, G.P., Ozbun, M.A., Sklar, L.A., and Buranda, T.: The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Anal. Biochem. 364, 180 (2007).
21.Gaigalas, A.K. and Wang, L.: Measurement of the fluorescence Quantum Yield using a spectrometer with an Integrating Sphere Detector. J. Res. Natl. Inst. Stand. Technol. 113, 17 (2008).
22.Thomas, J.D.: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 36, 112 (2008).
23.Winter, J.O., Liu, T.Y., Korgel, B.A., and Schmidt, C.E.: Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 13, 1673 (2001).
24.Pfeiffer, C., Rehbock, C., Hühn, D., Carrillo-Carrion, C., de Aberasturi, D.J., Merk, V., Barcikowski, S., and Parak, W.J.: Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. Royal Soc. Interface 11, 20130931 (2014).
25.Moore, T.L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., and Petri-Fink, A.: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. Chem. Soc. Rev. 44, 6287 (2015).
26.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).
27.Wang, F., Tang, R., and Buhro, W.E.: The trouble with TOPO; identification of adventitious impurities beneficial to the growth of Cadmium Selenide quantum dots, rods, and wires. Nano Lett. 8, 3521 (2008).
28.van Sark, W.G.J.H.M., Frederix, P.L.T.M., Van den Heuvel, D.J., Gerritsen, H.C., Bol, A.A., van Lingen, J.N.J., de Mello Donegá, C., and Meijerink, A.: Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281 (2001).
29.RodriguezViejo, J., Jensen, K.F., Mattoussi, H., Michel, J., Dabbousi, B.O., and Bawendi, M.G.: Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Appl. Phys. Lett. 70, 2132 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Lee et al. supplementary material
Figures S1-S5

 Word (978 KB)
978 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed