Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:31:04.076Z Has data issue: false hasContentIssue false

First principles study of two-dimensional early transition metal carbides

Published online by Cambridge University Press:  23 October 2012

Murat Kurtoglu
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and Gurallar ArtCraft Inc., Kutahya, Turkey
Michael Naguib
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104; and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104
Yury Gogotsi*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104; and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104
Michel W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
Address all correspondence to Yury Gogotsi atgogotsi@drexel.edu
Get access

Abstract

Recently, we reported on the facile synthesis of a number of two-dimensional early transition metal carbides and nitrides, derived from the MAX phases, that we labeled MXenes. Herein, we report on the electronic and elastic properties—investigated by first principles calculations utilizing the generalized gradient approximation within the density functional theory—of the following two-dimensional transition metal carbides: Ti2C, Ti3C2, Ti4C3, V2C, Cr2C, Zr2C, Hf2C, and Ta2C, Ta3C2, and Ta4C3. Similar to the MAX phases, the MXenes are found to be metallic and possess high elastic moduli when stretched along the basal planes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle ScholarPubMed
2. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle ScholarPubMed
3. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).CrossRefGoogle ScholarPubMed
4. Yoo, E., Kim, J., Hosono, E., Zhou, H.-S., Kudo, T., and Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277 (2008).CrossRefGoogle ScholarPubMed
5. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006).CrossRefGoogle ScholarPubMed
6. Wu, D., Zhang, F., Liu, P., and Feng, X.: Two-dimensional nanocomposites based on chemically modified graphene. Chem. Eur. J. 17, 10804 (2011).CrossRefGoogle ScholarPubMed
7. Loh, K.P., Bao, Q., Ang, P.K., and Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277 (2010).CrossRefGoogle Scholar
8. Gogotsi, Y.: Controlling graphene properties through chemistry. J. Phys. Chem. Lett. 2, 2509 (2011).CrossRefGoogle Scholar
9. Pacile, D., Meyer, J.C., Girit, C.O., and Zettl, A.: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).CrossRefGoogle Scholar
10. Ma, R. and Sasaki, T.: Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082 (2010).CrossRefGoogle ScholarPubMed
11. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl Acad. Sci. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
12. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 . Adv. Mater. 23, 4248 (2011).Google Scholar
13. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., and Barsoum, M.W.: Two-dimensional transition metal carbides. ACS Nano 6, 1322 (2012).CrossRefGoogle ScholarPubMed
14. Barsoum, M.W.: The MN + 1AXN phases: a new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
15. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P.-L., Simon, P., Barsoum, M.W., and Gogotsi, Y.: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61 (2012).CrossRefGoogle Scholar
16. Kudin, K.N., Scuseria, G.E., and Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001).CrossRefGoogle Scholar
17. Zhao, Q., Nardelli, M.B., and Bernholc, J.: Ultimate strength of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002).CrossRefGoogle Scholar
18. Rydberg, H., Dion, M., Jacobson, N., Schröder, E., Hyldgaard, P., Simak, S.I., Langreth, D.C., and Lundqvist, B.I.: Van der Waals density functional for layered structures. Phys. Rev. Lett. 91, 126402 (2003).CrossRefGoogle Scholar
19. Sato, H., Ono, K., Sasaki, T., and Yamagishi, A.: First-principles study of two-dimensional titanium dioxides. J. Phys. Chem. B 107, 9824 (2003).CrossRefGoogle Scholar
20. Kurtoglu, M.E., Longenbach, T., Sohlberg, K., and Gogotsi, Y.: Strong coupling of Cr and N in Cr–N-doped TiO2 and its effect on photocatalytic activity. J. Phys. Chem. C 115, 17392 (2011).CrossRefGoogle Scholar
21. Shein, I.R. and Ivanovskii, A.L.: Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 65, 104 (2012).CrossRefGoogle Scholar
22. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).Google Scholar
23. Wu, Z. and Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
24. Kanoun, M.B. and Jaouen, M.: Structure of the ternary carbide Ti3SnC2 from ab initio calculations. J. Phys. Condens. Matter. 20, 085211 (2008).CrossRefGoogle Scholar
25. Konstantinova, E., Dantas, S.O., and Barone, P.M.V.B.: Electronic and elastic properties of two-dimensional carbon planes. Phys. Rev. B 74, 035417 (2006).CrossRefGoogle Scholar
26. Michel, K.H. and Verberck, B.: Theory of the elastic constants of graphite and graphene. Phys. Status Solidi. B 245, 2177 (2008).CrossRefGoogle Scholar
27. Gruzalski, G.R. and Zehner, D.M.: Defect states in substoichiometric tantalum carbide. Phys. Rev. B 34, 3841 (1986).CrossRefGoogle ScholarPubMed
28. Lofland, S.E., Hettinger, J.D., Harrell, K., Finkel, P., Gupta, S., Barsoum, M.W. and Hug, G. Elastic and electronic properties of select M2AX phases. Appl. Phys. Lett. 84, 508 (2004).CrossRefGoogle Scholar
29. Sahnoun, M., Daul, C., Driz, M., Parlebas, J.C., and Demangeat, C.: FP-LAPW investigation of electronic structure of TaN and TaC compounds. Comput. Mater. Sci. 33, 175 (2005).CrossRefGoogle Scholar