Skip to main content Accessibility help
×
Home

Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces

  • Ning An (a1) (a2), Kaiyang Wang (a2), Haohan Wei (a1), Qinghai Song (a2) and Shumin Xiao (a1)...

Abstract

Transparent high refractive index materials are of the central importance for the development of metasurface in visible range. Titanium dioxide (TiO2) has been considered as a perfect candidate due to its wide band gap and high refractive index. However, till now, it is still quite challenging to fabricate high-quality TiO2 films with high refractive indices and low losses. Here we demonstrate the fabrication of high-quality TiO2 film using an electron-beam evaporation method. We show that the post-annealing conditions play key roles in the microstructure crystallographic and the optical refractive index of the TiO2 films. A predominately oriented TiO2 film has been achieved by annealing at 700 °C in oxygen ambient. The refractive index is as high as 2.4, and the corresponding loss is negligible at 632 nm. Further studies on dielectric antennas show that our TiO2 film can be an ideal platform to fabricate metasurface in visible frequency range. We believe that our research will be important for the advances of all-dielectric metasurfaces.

Copyright

Corresponding author

Address all correspondence to Qinghai Song and Shumin Xiao at qinghai.song@hitsz.edu.cn, shumin.xiao@hitsz.edu.cn

References

Hide All
1. Yu, N. and Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13, 139150 (2014).
2. Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Planar photonics with metasurfaces. Science 339, 1232009 (2013).
3. Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., and Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333337 (2011).
4. Ni, X., Emani, N.K., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Broadband light bending with plasmonic nanoantennas. Science 335, 427427 (2012).
5. Sun, S., He, Q., Xiao, S., Xu, Q., Li, X., and Zhou, L.: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426431 (2012).
6. Larouche, S., Tsai, Y.J., Tyler, T., Jokerst, N.M., and Smith, D.R.: Infrared metamaterial phase holograms. Nat. Mater. 11, 450454 (2012).
7. Huang, L., Chen, X., Mühlenbernd, H., Zhang, H., Chen, S., Bai, B., and Zhang, S.: Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).
8. Aieta, F., Genevet, P., Kats, M.A., Yu, N., Blanchard, R., Gaburro, Z., and Capasso, F.: Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 49324936 (2012).
9. Pors, A., Nielsen, M.G., Eriksen, R.L., and Bozhevolnyi, S.I.: Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829834 (2013).
10. Aieta, F., Kats, M.A., Genevet, P., and Capasso, F.: Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 13421345 (2015).
11. Yang, Y., Wang, W., Moitra, P., Kravchenko, I.I., Briggs, D.P., and Valentine, J.: Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 13941399 (2014).
12. Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., and Kivshar, Y.S.: High efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813820 (2015).
13. Lin, D., Fan, P., Hasman, E., and Brongersma, M.L.: Dielectric gradient metasurface optical elements. Science 345, 298302 (2014).
14. Yang, Y., Wang, W., and Moitra, P.: Dielectric meta-Reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 13941399 (2014).
15. Moitra, P., Slovick, B.A., Li, W., Kravchencko, I.I., Briggs, D.P., Krishnamurthy, S., and Valentine, J.: Large-scale all-dielectric Metamaterial perfect reflectors. ACS Photonics 2, 692698 (2015).
16. Li, J., Shah, C.M., Withayachumnan, W., Ung, B.S.Y., Mitchell, A., Sriram, S., and Abbott, D.: Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 102, 121101–121101-4 (2013).
17. Ou, J.Y., Plum, E., Jiang, L., and Zheludev, N.I.: Reconfigurable photonic metamaterials. Nano Lett. 11, 21422144 (2011).
18. Yao, J.K., Huang, H.L., and Ma, J.Y.: High refractive index TiO2 film deposited by electron beam evaporation. Surf. Eng. 25, 257260 (2009).
19. Sonawane, R.S., Hegdeand, S.G., and Dongare, M.K.: Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating. Mater. Chem. Phys. 77, 744750 (2003).
20. Löbl, P., Huppertz, M., and Merge, D.: Nucleation and growth in TiO2 films prepared by sputtering and evaporation[J]. Thin Solid Films 251, 7279 (1994).
21. Suda, Y., Kawasaki, H., and Ueda, T.: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453, 162166 (2004).
22. Sarakinos, K., Alami, J., Klever, C., and Wuttig, M.: Growth of TiOx films by high power pulsed magnetron sputtering from a compound TiO1.8 target. Rev. Adv. Mater. 15, 4448 (2007).
23. Kotake, H., Jiaand, J., and Nakamura, S.: Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase. J. Vac. Sci. Technol. A 33, 041505 (2015).
24. Bendavid, A., Martin, P.J., and Jamting, Å.: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 355, 611 (1999).
25. Sun, S., Yi, N., Yao, W., Song, Q., and Xiao, S.: Enhanced second-harmonic generation from nonlinear optical metamagnetics. Opt. Express 22, 2661326620 (2015).

Related content

Powered by UNSILO

Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces

  • Ning An (a1) (a2), Kaiyang Wang (a2), Haohan Wei (a1), Qinghai Song (a2) and Shumin Xiao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.