Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T23:52:16.288Z Has data issue: false hasContentIssue false

Enhanced performance and endurance of nano-porous platinum solid oxide fuel cell electrodes by oxygen partial pressure cycling

Published online by Cambridge University Press:  11 July 2013

Cynthia N. Ginestra
Affiliation:
Stanford University, Stanford, California
Paul C. McIntyre*
Affiliation:
Stanford University, Stanford, California
*
Address all correspondence to Paul C. McIntyre atpcm1@stanford.edu
Get access

Abstract

We demonstrate that alternating the oxygen partial pressure gradient across a yttria-stabilized zirconia (YSZ) electrolyte membrane prior to solid oxide fuel cell (SOFC) testing with nanoporous Pt electrodes greatly increases (e.g. by >70-fold at 350 °C) peak power density compared with devices without pretreatment. Transiently altering the oxygen activity at the cathode–YSZ interface appears to change the wetting characteristics of the nanoporous Pt, significantly affecting the stability and low-temperature performance of the SOFCs. Image analysis and impedance spectroscopy results suggest that an increase in triple-phase boundary area fraction at the cathode–YSZ interface contributes to the observed effect.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kim, Y.B., Hsu, C.-M., Connor, S.T., Gür, T.M., Cui, Y., and Prinz:, F.B.Nanopore patterned Pt array electrodes for triple phase boundary study in low temperature SOFC. J. Electrochem. Soc. 157, B1269B1274 (2010).Google Scholar
2Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hütter, A., Graf, S., Infortuna, A., Müller, P., Rupp, J.L.M., Schneider, J., and Gauckler, L.J.: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18, 31583168 (2008).Google Scholar
3Kerman, K., Lai, B.K., and Ramanathan, S.: Pt/Y0.16O1.92/Pt thin film solid oxide fuel cells: electrode microstructure and stability considerations. J. Power Sources 196, 26082614 (2011).Google Scholar
4Baumann, N., Mutoro, E., and Janek, J.: Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics 181, 715 (2010).Google Scholar
5Galinski, H., Ryll, T., Elser, P., Rupp, J.L.M., Bieberle-Hütter, A., and Gauckler, L.J.: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B 82, 235415 (2010).CrossRefGoogle Scholar
6Ryll, T., Galinski, H., Schlagenhauf, L., Elser, P., Rupp, J.L.M., Bieberle-Hutter, A., and Gauckler, L.J.: Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv. Funct. Mater. 21, 565 (2011).Google Scholar
7Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 47914843 (2004).Google Scholar
8Ryll, T., Galinski, H., Schlagenhauf, L., Rechberger, F., Ying, S., Gauckler, L.J., Mornaghini, F.C.F., Ries, Y., Spolenak, R., and Döbeli, M.: Dealloying of platinum–aluminum thin films: electrode performance. Phys. Rev. B 84, 184111 (2011).CrossRefGoogle Scholar
9Toghan, A., Khodari, M., Steinbach, F., and Imbihl, R.: Microstructure of thin film platinum electrodes on yttrium stabilized zirconia prepared by sputter deposition. Thin Solid Films 519, 8139 (2011).Google Scholar
10Barsoukov, E. and Macdonald, J.R.: Impedance Spectroscopy, 2nd ed. (John Wiley & Sons, Inc, Hoboken, New Jersey, 2005) p. 521.Google Scholar
11O'Hayre, R., Cha, S.W., Colella, W., and Prinz, F.B.: Fuel Cell Fundamentals, 1st ed. (John Wiley & Sons, Inc, Hoboken, New Jersey, 2006) p. 234.Google Scholar
12Opitz, A.K., Hörlein, M.P., Huber, T., and Fleig, J.: Current–voltage characteristics of platinum model electrodes on yttria-stabilized zirconia. J. Electrochem. Soc. 159, B502 (2012).CrossRefGoogle Scholar
13Ni, M., Leung, M.K.H., and Leung, D.Y.C.: Parametric study of solid oxide fuel cell performance. Energy Conv. Management 48, 1525 (2007).CrossRefGoogle Scholar
14Pöpkea, H., Mutorob, E., Luerßena, B., and Janek, J.: Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes – on the role of PtOx formation on activation, passivation, and charge transfer. Catal. Today 202, 12 (2013).Google Scholar
15Srolovitz, D.J. and Safran, S.A.: Capillary instabilities in thin films. I. Energetics. J. Appl. Phys. 60, 247254 (1986).CrossRefGoogle Scholar
16Lin, A.Y. and McIntyre, P.C.: Morphological stability of mesoporous Pt thin films deposited via nanosphere lithography on YSZ. Electrochem. Solid-State Lett. 14, B96B100 (2011).CrossRefGoogle Scholar
17Clausen, B.S., Schiøtz, J., Grhbæk, L., Ovesen, C.V., Jacobsen, K.W., Norskov, J.K., and Topsøe, H.: Wetting/non-wetting phenomena during catalysis: evidence from in situ on-line EXAFS studies of cu-based catalysts. Topics Catal. 1, 367376 (1994).CrossRefGoogle Scholar
Supplementary material: PDF

Ginestra supplementary material

Ginestra supplementary material

Download Ginestra supplementary material(PDF)
PDF 1 MB