Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:01:13.259Z Has data issue: false hasContentIssue false

Emergence of central mode in the paraelectric phase of ferroelectric perovskites

Published online by Cambridge University Press:  12 February 2013

Jeevaka Weerasinghe
Affiliation:
Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701
L. Bellaiche
Affiliation:
Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701
T. Ostapchuk
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague 8, Czech Republic
P. Kužel
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague 8, Czech Republic
C. Kadlec
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague 8, Czech Republic
S. Lisenkov
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620
I. Ponomareva
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620
J. Hlinka*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague 8, Czech Republic
*
Address all correspondence to J. Hlinka at hlinka@fzu.cz
Get access

Abstract

THz-range dielectric spectroscopy and first-principle-based effective-Hamiltonian molecular dynamics simulations were used to elucidate the dielectric response in the paraelectric phase of (Ba, Sr)TiO3 solid solutions. Our analysis suggests a crossover between two regimes: a higher-temperature regime governed by the soft mode only versus a lower-temperature regime exhibiting a coupled soft mode/central mode dynamics. Interestingly, a single model can be used to adjust the THz dielectric response in the entire range of the paraelectric phase. The central peak cannot be discerned anymore in the dielectric spectra when the rate of underlying thermally activated processes exceeds certain characteristic frequency of the system.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lyddane, R.H., Sachs, R.G., and Teller, E.: On the polar vibrations of alkali halides. Phys. Rev. 59, 673 (1941).Google Scholar
2Petzelt, J., Kozlov, G.V., and Volkov, A.A.: Dielectric spectroscopy of paraelectric soft modes. Ferroelectrics 73, 101 (1987).Google Scholar
3Shapiro, S.M., Axe, J.D., Shirane, G., and Riste, T.: Critical neutron scattering in SrTiO3 and KMnF3. Phys. Rev. B 6, 4332 (1972).CrossRefGoogle Scholar
4Girshberg, Y. and Yacobi, Y.: Ferroelectric phase transitions in perovskites with off-center ion displacements. Solid State Commun. 103, 425 (1997).Google Scholar
5Onodera, Y.: Dynamical response of ferroelectrics in terms of a classical anharmonic-oscillator model. J. Phys. Soc. Jpn. 73, 1216 (2004).Google Scholar
6Hlinka, J., Ostapchuk, T., Nuzhnyy, D., Petzelt, J., Kuzel, P., Kadlec, C., Vanek, P., Ponomareva, I., and Bellaiche, L.: Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 101, 167402 (2008).Google Scholar
7Pirc, R. and Blinc, R.: Off-center Ti model of barium titanate. Phys. Rev. B 70, 134107 (2004).Google Scholar
8Vogt, H., Sanjurjo, J.A., and Rossbroich, G.: Soft-mode spectroscopy in cubic BaTiO3 by hyper-Raman scattering. Phys. Rev. B 26, 5904 (1982).Google Scholar
9Ponomareva, I., Bellaiche, L., Ostapchuk, T., Hlinka, J., and Petzelt, J.: Terahertz dielectric response of cubic BaTiO3. Phys. Rev. B 77, 012102 (2008).CrossRefGoogle Scholar
10Shirokov, V.B., Torgashev, V.I., Bakirov, A.A., and Lemanov, V.V.: Concentration phase diagram of BaxSr1−xTiO3 solid solutions. Phys. Rev. B 73, 104116 (2006).Google Scholar
11Walizer, L., Lisenkov, S., and Bellaiche, L.: Finite-temperature properties of (Ba,Sr)TiO3 systems from atomistic simulations. Phys. Rev. B 73, 144105 (2006).Google Scholar
12Ostapchuk, T., Petzelt, J., Kuzel, P., Savinov, M., Hlinka, J., Tkach, A., Vilarinho, P.M., Lisenkov, S., Ponomareva, I., and Bellaiche, L.: Lattice dynamics in Ba0.7Sr0.3TiO3: study by THz and IR spectroscopy and ab initio simulations. Phase Transitions 83, 955 (2010).Google Scholar
13Ostapchuk, T., Petzelt, J., Hlinka, J., Bovtun, V., Kuzel, P., Ponomareva, I., Lisenkov, S., Bellaiche, L., Tkach, A., and Vilarinho, P.: Broad-band dielectric spectroscopy and ferroelectric soft-mode response in the Ba0.6Sr0.4TiO3 solid solution. J. Phys.: Condens. Matter 21, 474215 (2009).Google Scholar
14Zhong, W., Vanderbilt, D., and Rabe, K.M.: Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1861 (1994); Phys. Rev. B 52, 6301 (1995).CrossRefGoogle ScholarPubMed
15Bellaiche, L. and Vanderbilt, D.: Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877 (2000).Google Scholar
16Ramer, N.J. and Rappe, A.M.: Application of a new virtual crystal approach for the study of disordered perovskites. J. Phys. Chem. Solids 61, 315 (2000).Google Scholar
17Dul'kin, E., Petzelt, J., Kamba, S., Mojaev, E., and Roth, M.: Relaxor-like behavior of BaTiO3 crystals from acoustic emission study. Appl. Phys. Lett. 97, 032903 (2010).Google Scholar
18Roth, M., Mojaev, E., Dul'kin, E., Gemeiner, P., and Dkhil, B.: Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics. Phys. Rev. Lett. 98, 265701 (2007).Google Scholar
19Burns, G. and Dacol, F.H.: Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 48, 853 (1983).Google Scholar
20Dkhil, B., Gemeiner, P., Al-Barakaty, A., Bellaiche, L., Dul'kin, E., Mojaev, E. and Roth, M.: Intermediate temperature scale T* in lead-based relaxor systems. Phys. Rev. B 80, 064103 (2009).CrossRefGoogle Scholar