Skip to main content Accessibility help

Electrochemical kinetics and dimensional considerations at the nanoscale: the influence of the density of states

  • H. Yamada (a1), R. Narayanan (a2) and P. R. Bandaru (a1) (a2) (a3)


The theories to describe the rate at which electrochemical reactions proceed do not consider explicitly the dimensionality or the occupancy of the energy levels of nanostructured electrodes. It is shown here that the density of states variation in nanoscale electrochemical systems yield novel modulations in the rate constant and concomitant electrical currents. The proposed models extend the utility of presently used Marcus–Hush–Chidsey kinetics to a larger class of materials and could be used as a test of dimensional character. The new models are applied to explain the experimental variation of the electrochemical rate constant of single-layer graphene.


Corresponding author

Address all correspondence to P. R. Bandaru at


Hide All
1.Kuznetsov, A.M.: Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory (CRC Press, Boca Raton, FL, 1995).
2.Savéant, J.-M.: Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (John Wiley & Sons, Inc., New York, NY, 2006).
3.Yamada, H. and Bandaru, P.R.: Limits to the magnitude of capacitance in carbon nanotube array electrode based electrochemical capacitors. Appl. Phys. Lett. 102, 173113 (2013).
4.Yamada, H. and Bandaru, P.R.: Enhanced electrical current densities in electrochemical systems through the use of nanostructured electrodes. Appl. Phys. Lett. 104, 213901 (2014).
5.Linden, D. and Reddy, T.B.: Linden's Handbook of Batteries (McGraw Hill, New York, NY, 2010).
6.Bard, A.J. and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications, 2nd ed. (John Wiley& Sons, Inc., New York, NY,2001).
7.Compton, R.G. and Banks, C.E.: Understanding Voltammetry (Imperial College Press, London, UK, 2011).
8.Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966 (1956).
9.Sutin, N.: Marcus’ contributions to electron-transfer theory. J. Phys. Chem. 90, 3465 (1986).
10.Hush, N.S.: Electron transfer in retrospect and prospect 1: adiabatic electrode processes. J. Electroanal. Chem. 470, 170 (1999).
11.Henstridge, M.C., Laborda, E., Rees, N.V., and Compton, R.G.: Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12 (2012).
12.Chidsey, C.E.: Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251, 919 (1991).
13.Grampp, G.: The marcus inverted region from theory to experiment. Angew. Chem. Int. Edn. 32, 691 (1993).
14.Miller, J.R., Calcaterra, L.T., and Closs, G.L.: Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047 (1984).
15.Fletcher, S.: The theory of electron transfer. J. Solid State Electrochem. 14, 705 (2010).
16.Li, T.T.T. and Weaver, M.J.: Intramolecular electron transfer at metal surfaces. 4. Dependence of tunneling probability upon donor-acceptor separation distance. J. Am. Chem. Soc. 106, 6107 (1984).
17.Bai, P. and Bazant, M.Z.: Charge transfer kinetics at the solid-solid interface in porous electrodes. Nat. Commun. 5, 3585 (2014).
18.Miller, J.R., Beitz, J.V., and Huddleston, R.K.: Effect of free energy on rates of electron transfer between molecules. J. Am. Chem. Soc. 106, 5057 (1984).
19.Narayanan, R., Yamada, H., Karakaya, M., Podila, R., Rao, A.M., and Bandaru, P.R.: Modulation of the electrostatic and quantum capacitances of few layered graphenes through plasma processing. Nano Lett. 15, 3067 (2015).
20.Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201 (2005).
21.Das Sharma, S., Adam, S., Hwang, E.H., and Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).
22.Zhu, W., Low, T., Perebeinos, V., Bol, A.A., Zhu, Y., Yan, H., Tersoff, J., and Avouris, P.: Structure and electronic transport in graphene wrinkles. Nano Lett. 12, 3431 (2012).
23.Ambrosi, A., Chua, C.K., Bonanni, A., and Pumera, M.: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150 (2014).
24.Zaretski, A.V., Moetazedi, H., Kong, C., Sawyer, E.J., Savagatrup, S., Valle, E., O'Connor, T.F., Printz, A.D., and Lipomi, D.J.: Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology 26, 45301 (2015).
25.Velicky, M., Bradley, D.F., Cooper, A.J., Hill, E.W., Kinloch, I.A., Mishchenko, A., Novoselov, K.S., PAtten, H.V., Toth, P.S., Valota, A.T., Worrall, S.D., and Dryfe, R.A.W.: Electron transfer kinetics on mono-and multilayer graphene. ACS Nano 8, 10089 (2014).
26.Yamada, H. and Bandaru, P.R.: Electrochemical kinetics and dimensional considerations, at the nanoscale. AIP Adv. 6, 65325 (2016).
27.Gerischer, H.: Principles of electrochemistry. In CRC Handb. Solid State Electrochem, edited by Gellings, P. J. and Bouwmeester, H. J. M. (CRC Press, Boca Raton, FL, 1997), pp. 974.
28.Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., von Klitzing, K., and Yacoby, A.: Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144 (2008).
29.Xia, J., Chen, F., Li, J., and Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009).
30.Park, B.Y., Zaouk, R., Wang, C., and Madou, M.J.: A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154, P1 (2007).

Electrochemical kinetics and dimensional considerations at the nanoscale: the influence of the density of states

  • H. Yamada (a1), R. Narayanan (a2) and P. R. Bandaru (a1) (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed