Skip to main content Accessibility help

Efficiency enhancement via metal-coated porous amorphous silicon back reflectors incorporated in amorphous silicon solar cells

  • Shweta Bhandaru (a1), Angelo Bozzola (a2), Marco Liscidini (a2) and Sharon M. Weiss (a3)


We present two straightforward and cost-effective methods, based on metal-assisted chemical etching and a direct imprinting technique, to fabricate metal-covered porous amorphous silicon back reflectors for amorphous silicon solar cells. We demonstrate an increase of approximately 30% in both short-circuit current and overall efficiency with respect to a cell with a flat metal back reflector. This is achieved by implementing light trapping via either a roughened porous amorphous silicon layer or an imprinted periodic grating. This work provides a pathway to increase amorphous silicon solar cell efficiency via increased absorption without significantly impacting processing costs.


Corresponding author

Address all correspondence to S.M. Weiss at and M. Liscidini at


Hide All
1. Xing, Y., Han, P., Wang, S., Liang, P., Lou, S., Zhang, Y., Hu, S., Zhu, H., Zhao, C., and Mi, Y.: A review of concentrator silicon solar cells. Renew. Sustain. Energy Rev. 51, 1697 (2015).
2. Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., and Sharifi, A.: A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 13, 1800 (2009).
3. Raut, H.K., Ganesh, V.A., Nair, A.S., and Ramakrishna, S.: Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779 (2011).
4. Bozzola, A., Liscidini, M., and Andreani, L.C.: Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt. Express 20, A224 (2012).
5. Martins, E.R., Li, J., Liu, Y., Depauw, V., Chen, Z., Zhou, J., and Krauss, T.F.: Deterministic quasi-random nanostructures for photon control. Nat. Commun. 4, 2665 (2013).
6. Pratesi, F., Burresi, M., Riboli, F., Vynck, K., and Wiersma, D.S.: Disordered photonic structures for light harvesting in solar cells. Opt. Express 21, A460 (2013).
7. Trevino, J., Forestiere, C., Di Martino, G., Yerci, S., Priolo, F., and Dal Negro, L.: Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells. Opt. Express 20, A418 (2012).
8. Jani, O., Ferguson, I., Honsberg, C., and Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91, 132117 (2007).
9. Gloeckler, M. and Sites, J.R.: Band-gap grading in Cu(In,Ga)Se2 solar cells. J. Phys. Chem. Solids 66, 1891 (2005).
10. Stadler, A.: Transparent conducting oxides—An up-to-date overview. Materials 5, 661 (2012).
11. Granqvist, C.G.: Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529 (2007).
12. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 24, 3 (2016).
13.Solar accounts for 1% of global electricity, how long will the next 1% take?: (accessed December 30, 2015).
14. Müller, J., Rech, B., Springer, J., and Vanecek, M.: TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917 (2004).
15. Curtin, B., Biswas, R., and Dalal, V.: Photonic crystal back reflectors for light management and enhanced absorption in amorphous silicon solar cells. Appl. Phys. Lett. 95, 231102 (2009).
16. Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).
17. Ryckman, J.D., Liscidini, M., Sipe, J.E., and Weiss, S.M.: Direct imprinting of porous substrates: a rapid and low-cost approach for patterning porous nanomaterials. Nano Lett. 11, 1857 (2011).
18. Liscidini, M., Gerace, D., Andreani, L.C., and Sipe, J.E.: Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media. Phys. Rev. B 77, 035324 (2008).
19. Andreani, L.C., Bozzola, A., Kowalczewski, P., and Liscidini, M.: Photonic light trapping and electrical transport in thin-film silicon solar cells. Sol. Energy Mat. Sol. C 135, 78 (2015).
20. Zanotto, S., Liscidini, M., and Andreani, L.C.: Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Opt. Express 18, 4260 (2010).
21. Huang, Z., Geyer, N., Werner, P., de Boor, J., and Gösele, U.: Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285 (2011).
22. Chartier, C., Bastide, S., and Lévy-Clément, C.: Metal-assisted chemical etching of silicon in HF–H2O2 . Electrochim. Acta 53, 5509 (2008).
23. Li, X.: Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16, 71 (2012).
24. Omampuliyur, R.S., Bhuiyan, M., Han, Z., Jing, Z., Li, L., Fitzgerald, E.A., Thompson, C.V., and Choi, W.K.: Nanostructured thin film silicon anodes for Li-ion microbatteries. J. Nanosci. Nanotechnol. 15, 4926 (2015).
25. Ishikawa, R., Kato, S., Yamazaki, T., Kurokawa, Y., Miyajima, S., and Kongai, M.: Solid-phase crystallization of amorphous silicon nanowire array and optical properties. Japan. J. Appl. Phys. 53, 02BE09 (2014).
26. Douani, R., Piret, G., Hadjersi, T., Chazalviel, J.-N., and Solomon, I.: Formation of a-Si:H and a-Si1−x C x :H nanowires by Ag-assisted electroless etching in aqueous HF/AgNO3 solution. Thin Solid Films 519, 5383 (2011).
27. Mares, J.W., Fain, J.S., Beavers, K.R., Duvall, C.L., and Weiss, S.M.: Shape-engineered multifunctional porous silicon nanoparticles by direct imprinting. Nanotechnology 26, 271001 (2015).
28. Kowalczewski, P., Liscidini, M., and Andreani, L.C.: Light trapping in thin-film solar cells with randomly rough and hybrid textures. Opt. Express 21, A808 (2013).
29. Battaglia, C., Hsu, C.-M., Söederströem, K., Escarré, J., Haug, F.-J., Charrière, M., Boccard, M., Despeisse, M., Alexander, D.T.L., Cantoni, M., Cui, Y., and Ballif, C.: Light trapping in solar cells: can periodic beat random. ACS Nano 6, 2790 (2012).
30. Green, M.A.: Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. Res. Appl. 10, 235 (2002).
Type Description Title
Supplementary materials

Bhandaru supplementary material
Bhandaru supplementary material 1

 Word (1.4 MB)
1.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed