Skip to main content Accessibility help
×
×
Home

Effective reduction of building heat loss without insulation materials via the photothermal effect of a chlorophyll thin film coated “Green Window”

  • Yuan Zhao (a1), Andrew W. Dunn (a1) and Donglu Shi (a1)

Abstract

One of the critical components of energy savings in buildings is thermal insulation, especially for windows in cold climates. The conventional approach mainly relies on a double-pane design. In this study, a new concept of “Green Window” has been designed for single-pane applications that lower the U-factor. The “Green Window” is structurally and simply composed of a thin film window coating of chlorophyll that exhibits pronounced photothermal effect, while remaining highly transparent. We demonstrate a new concept in “thermal insulation” via optical means instead of solely through thermal insulators or spectral selectivity. This concept lifts the dependence on insulating materials making single-pane window highly possible.

Copyright

Corresponding author

Address all correspondence to Donglu Shi at donglu.shi@uc.edu

References

Hide All
1.ARPA-E: Single-Pan Highly Insulating Efficient Lucid Designs (SHIELD) Program Overview, URL: https://arpa-e.energy.gov/sites/default/files/documents/files/SHIELD_ProgramOverview.pdf. [accessed January 20, 2019].
2.Han, J., Lu, L., and Yang, H.: Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings. Appl. Energy 87, 34313437 (2010).
3.Rezaei, S.D., Shannigrahi, S., and Ramakrishna, S.: A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 159, 2651 (2017).
4.Khandelwal, H., Schenning, A.P.H.J., and Debije, M.G.: Infrared regulating smart window based on organic materials. Adv. Energy. Mater. 7, 1602209 (2017).
5.Cuce, E. and Cuce, P.M.: Vacuum glazing for highly insulating windows: recent developments and future prospects. Renewable Sustainable Energy Rev. 54, 13451357 (2016).
6.Alkilany, A.M., Thompson, L.B., Boulos, S.P., Sisco, P.N., and Murphy, C.J.: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Delivery Rev. 64, 190199 (2012).
7.Zhao, Y., Sadat, M.E., Dunn, A., Xu, H., Chen, C.-H., Nakasuga, W., Ewing, R.C., and Shi, D.: Photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications. Solar Energy Materials & Solar Cells 161, 247254 (2017).
8.ASTM G173-03(2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM International (West Conshohocken, PA, 2012).
9.Measuring Performance: Visible Transmittance (VT). EFFICIENT WINDOWS COLLABORATIVE. URL: http://www.efficientwindows.org/vt.php. [accessed January 20, 2019].
10.Pilkington: Pilkington K Glass S Brochures. [Online]. Available: https://www.pilkington.com/en-gb/uk/products/product-categories/thermal-insulation/pilkington-k-glass-range/pilkington-k-glass-s%20-. [Accessed January 20, 2019].
11.Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 28, 217 (2008).
12.Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 21152120 (2006).
13.Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., and Shi, D.: Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 40784088 (2013).
14.Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.-T., and Liu, Z.: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 33183323 (2010).
15.Chu, M., Li, H., Wu, Q., Wo, F., and Shi, D.: Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies. Biomaterials 35, 83578373 (2014).
16.Roper, D.K., Ahn, W., and Hoepfner, M.: Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 36363641 (2007).
17.Jin, H., Lin, G., Bai, L., Amjad, M., and Filho, E.P.B.: Photothermal conversion efficiency of nanofluids: an experimental and numerical study. Sol. Energy 139, 278289 (2016).
18.ASTM C1199-14, Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods. ASTM International (West Conshohocken, PA, 2014).
19.Carmody, J., Selkowitz, S., Arasteh, D., and Heschong, L.: Residential Windows: A Guide to new Technologies and Energy Performance, 3rd ed. (W. W. Norton & Company, New York, 2007).
20.U. E. P. Agency: Windows, Doors & Skylights Key Product Criteria. URL: https://www.energystar.gov/products/building_products/residential_windows_doors_and_skylights/key_product_criteria. [accessed September 12, 2018].
21.Scotter, M., Castle, L., and Roberts, D.: Method development and HPLC analysis of retail foods and beverages for copper chlorophyll (E141[i]) and chlorophyllin (E141[ii]) food colouring materials. Food Addit. Contam. 22, 11631175 (2006).
22.Perevalov, V.P., Vinokurov, E.G., Zuev, K.V., Vasilenko, E.A., and Tsivadze, A.Y.: Modification and application of metal phthalocyanines in heterogeneous systems. Protection of Metals and Physical Chemistry of Surfaces 53, 199214 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Zhao et al. supplementary material
Zhao et al. supplementary material 1

 Word (39 KB)
39 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed