Skip to main content Accessibility help
×
Home

Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays

  • Luciano De Sio (a1) (a2) (a3), Ugo Cataldi (a4), Alexa Guglielmelli (a3) (a5), Thomas Bürgi (a4), Nelson Tabiryan (a1) and Timothy J. Bunning (a6)...

Abstract

A thermoresponsive large-area plasmonic architecture, made from randomly distributed gold nanoparticles (GNPs) located at the substrate interface of a cholesteric liquid crystal (CLC) cell, is fabricated and thoroughly characterized. A photo-thermal heating effect due to the localized plasmonic resonance (LPR) mechanism is generated by pumping the GNP array with a resonant light beam. The photo-induced heat, propagating through the CLC layer, induces a gradual phase transition from the cholesteric to isotropic phase. Both the plasmonic and photonic properties of the system as both the selective reflection properties and frequency of the LPR are modulated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Luciano De Sio at luciano.desio@uniroma1.it

References

Hide All
1.Viktor, G.V.: The electrodynamics of substances with simultaneously negative values of ##IMG## [http://ej.iop.org/images/0038-5670/10/4/R04/toc_eps.gif] ε and μ. Sov. Phys. Usp. 10, 509 (1968).
2.Aubry, A., Lei, D.Y., Fernández-Domínguez, A.I., Sonnefraud, Y., Maier, S.A., and Pendry, J.B.: Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574 (2010).
3.Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., and Xia, F.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nano 7, 330 (2012).
4.Zhang, X. and Liu, Z.: Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435 (2008).
5.Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).
6.Khorasaninejad, M. and Capasso, F.: Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709 (2015).
7.Neu, J. and Rahm, M.H.: Metamaterial-Based, Gradient Index Beam Steerer for Terahertz Radiation, in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. CM1J.3.
8.Hutter, E. and Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685 (2004).
9.Liz-Marzán, L.M.: Nanometals: formation and color. Mater. Today 7, 26 (2004).
10.Govorov, A.O. and Richardson, H.H.: Generating heat with metal nanoparticles. Nano Today 2, 30 (2007).
11.De Sio, L., Placido, T., Comparelli, R., Lucia Curri, M., Striccoli, M., Tabiryan, N., and Bunning, T.J.: Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Prog. Quantum Electron. 41, 23 (2015).
12.Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U.: Demonstration of a spacer-based nanolaser. Nature 460, 1110 (2009).
13.Xiao, S., Drachev, V.P., Kildishev, A.V., Ni, X., Chettiar, U.K., Yuan, H.-K., and Shalaev, V.M.: Loss-free and active optical negative-index metamaterials. Nature 466, 735 (2010).
14.Holmström, P., Thylén, L., and Bratkovsky, A.: Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss. Appl. Phys. Lett. 97, 073110 (2010).
15.Huang, X. and El-Sayed, M.A.: Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 47, 1 (2011).
16.de Gennes, P.G.: The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).
17.De Sio, L., Caputo, R., Cataldi, U., and Umeton, C.: Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials. J. Mater. Chem. 21, 18967 (2011).
18.Pezzi, L., De Sio, L., Veltri, A., Placido, T., Palermo, G., Comparelli, R., Curri, M.L., Agostiano, A., Tabiryan, N., and Umeton, C.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals. Phys. Chem. Chem. Phys. 17, 20281 (2015).
19.Kurochkin, O., Murugesan, Y.K., Bennett, T.P., D'Alessandro, G., Reznikov, Y., Tang, B.J., Mehl, G.H., and Kaczmarek, M.: Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation. Phys. Chem. Chem. Phys. 18, 11503 (2016).
20.Cunningham, A., Mühlig, S., Rockstuhl, C., and Bürgi, T.: Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles. J. Phys. Chem. C 115, 8955 (2011).
21.Cataldi, U., Caputo, R., Kurylyak, Y., Klein, G., Chekini, M., Umeton, C., and Burgi, T.: Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling. J. Mater. Chem. C 2, 7927 (2014).
22.Information available at http://www.beamco.com (accessed December 20, 2017).
23.Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).
24.Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).

Dynamic optical properties of gold nanoparticles/cholesteric liquid crystal arrays

  • Luciano De Sio (a1) (a2) (a3), Ugo Cataldi (a4), Alexa Guglielmelli (a3) (a5), Thomas Bürgi (a4), Nelson Tabiryan (a1) and Timothy J. Bunning (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed