Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:29:35.984Z Has data issue: false hasContentIssue false

Dislocation surface nucleation in surfactant-passivated metallic nanocubes

Published online by Cambridge University Press:  20 June 2019

Mehrdad T. Kiani
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
Radhika P. Patil
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
X. Wendy Gu*
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
*
Address all correspondence to Wendy Gu at xwgu@stanford.edu
Get access

Abstract

The strength of single-crystalline nanoscale metals is controlled by dislocation nucleation from free surfaces. Surface properties such as crystallographic orientation, surface stress, and surface diffusion have been proposed as key parameters that control dislocation surface nucleation, but have not been confirmed experimentally. To investigate the influence of surface parameters, in situ scanning electron microscope mechanical testing is used to compress defect-free Ag and Cu nanocubes that are passivated with organic surfactants in order to tune their surface properties. Comparison between passivated nanocubes indicates that yield strength may depend on surfactant binding energy, but is also dependent on intrinsic material properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

1.Shin, J., Chen, L.Y., Sanli, U.T., Richter, G., Labat, S., Richard, M.-I., Cornelius, T., Thomas, O., and Gianola, D.S.: Controlling dislocation nucleation-mediated plasticity in nanostructures via surface modification. Acta Mater. 166, 572 (2019).Google Scholar
2.Weinberger, C.R., Jennings, A.T., Kang, K., and Greer, J.R.: Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids 60(1), 84 (2012).10.1016/j.jmps.2011.09.010Google Scholar
3.Jeon, S.-J., Yazdi, S., Thevamaran, R., and Thomas, E.L.: Synthesis of monodisperse single crystalline Ag microcubes via seed-mediated growth. Cryst. Growth Des. 17(1), 284 (2017).Google Scholar
4.Greer, J.R., Kim, J.-Y., and Burek, M.J.: The in-situ mechanical testing of nanoscale single-crystalline nanopillars. JOM 61(12), 19 (2009).10.1007/s11837-009-0174-8Google Scholar
5.Richter, G., Hillerich, K., Gianola, D.S., Mönig, R., Kraft, O., and Volkert, C.A.: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9(8), 3048 (2009).10.1021/nl9015107Google Scholar
6.Jennings, A.T., Gross, C., Greer, F., Aitken, Z.H., Lee, S.-W., Weinberger, C.R., and Greer, J.R.: Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater. 60(8), 3444 (2012).Google Scholar
7.Rabkin, E. and Srolovitz, D.J.: Onset of plasticity in gold nanopillar compression. Nano Lett. 7(1), 101 (2007).Google Scholar
8.Mordehai, D., Lee, S.-W., Backes, B., Srolovitz, D.J., Nix, W.D., and Rabkin, E.: Size effect in compression of single-crystal gold microparticles. Acta Mater. 59(13), 5202 (2011).Google Scholar
9.Han, W.-Z., Huang, L., Ogata, S., Kimizuka, H., Yang, Z.-C., Weinberger, C., Li, Q.-J., Liu, B.-Y., Zhang, X.-X., Li, J., Ma, E., and Shan, Z.-W.: From “smaller is stronger” to “size-independent strength plateau”: towards measuring the ideal strength of iron. Adv. Mater. 27(22), 3385 (2015).10.1002/adma.201500377Google Scholar
10.Li, Q.-J., Xu, B., Hara, S., Li, J., and Ma, E.: Sample-size-dependent surface dislocation nucleation in nanoscale crystals. Acta Mater. 145, 19 (2018).Google Scholar
11.McDowell, M.T., Leach, A.M., and Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8(11), 3613 (2008).Google Scholar
12.Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., and Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006).Google Scholar
13.Sun, J., He, L., Lo, Y.-C., Xu, T., Bi, H., Sun, L., Zhang, Z., Mao, S.X., and Li, J.: Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13(11), 1007 (2014).Google Scholar
14.Zhou, S., Li, J., Gilroy, K.D., Tao, J., Zhu, C., Yang, X., Sun, X., and Xia, Y.: Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 10(11), 9861 (2016).Google Scholar
15.Moran, C.H., Rycenga, M., Zhang, Q., and Xia, Y.: Replacement of poly(vinyl pyrrolidone) by thiols: a systematic study of Ag nanocube functionalization by surface-enhanced Raman scattering. J. Phys. Chem. C 115(44), 21852 (2011).10.1021/jp207868aGoogle Scholar
16.Hsia, C.-F., Madasu, M., and Huang, M.H.: Aqueous phase synthesis of Au–Cu core–shell nanocubes and octahedra with tunable sizes and noncentrally located cores. Chem. Mater. 28(9), 3073 (2016).Google Scholar
17.O'Regan, C., Zhu, X., Zhong, J., Anand, U., Lu, J., Su, H., and Mirsaidov, U.: CTAB-influenced electrochemical dissolution of silver dendrites. Langmuir 32(15), 3601 (2016).10.1021/acs.langmuir.6b00037Google Scholar
18.Al-Saidi, W.A., Feng, H., and Fichthorn, K.A.: Adsorption of polyvinylpyrrolidone on Ag surfaces: insight into a structure-directing agent. Nano Lett. 12(2), 997 (2012).Google Scholar
19.Liu, S.-H., Balankura, T., and Fichthorn, K.A.: Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory. Phys. Chem. Chem. Phys. 18(48), 32753 (2016).10.1039/C6CP07030BGoogle Scholar
20.Meena, S.K., Celiksoy, S., Schäfer, P., Henkel, A., Sönnichsen, C., and Sulpizi, M.: The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 18(19), 13246 (2016).Google Scholar
21.Koczkur, K.M., Mourdikoudis, S., Polavarapu, L., and Skrabalak, S.E.: Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883 (2015).Google Scholar
22.Evans, S.D. and Ulman, A.: Surface potential studies of alkyl-thiol monolayers adsorbed on gold. Chem. Phys. Lett. 170(5–6), 462 (1990).10.1016/S0009-2614(90)87085-6Google Scholar
23.Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E., and Güntherodt, H.-J.: Surface stress in the self-assembly of alkanethiols on gold. Science 276(5321), 2021 (1997).10.1126/science.276.5321.2021Google Scholar
24.Kiani, M.T., Wang, Y., Bertin, N., Cai, W., and Gu, X.W.: Strengthening mechanism of a single precipitate in a metallic nanocube. Nano Lett. 19(1), 255 (2019).10.1021/acs.nanolett.8b03857Google Scholar
25.Maaß, R., Wraith, M., Uhl, J.T., Greer, J.R., and Dahmen, K.A.: Slip statistics of dislocation avalanches under different loading modes. Phys. Rev. E 91(4), 042403 (2015).Google Scholar
26.Zhu, Y., Qin, Q., Xu, F., Fan, F., Ding, Y., Zhang, T., Wiley, B.J., and Wang, Z.L.: Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85(4), 045443 (2012).Google Scholar
27.Filleter, T., Ryu, S., Kang, K., Yin, J., Bernal, R.A., Sohn, K., Li, S., Huang, J., Cai, W., and Espinosa, H.D.: Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8(19), 2986 (2012).10.1002/smll.201200522Google Scholar
28.Seo, J.-H., Yoo, Y., Park, N.-Y., Yoon, S.-W., Lee, H., Han, S., Lee, S.-W., Seong, T.-Y., Lee, S.-C., Lee, K.-B., Cha, P.-R., Park, H.S., Kim, B., and Ahn, J.-P.: Superplastic deformation of defect-free Au nanowires via coherent twin propagation. Nano Lett. 11(8), 3499 (2011).Google Scholar
29.Seo, J.-H., Park, H.S., Yoo, Y., Seong, T.-Y., Li, J., Ahn, J.-P., Kim, B., and Choi, I.-S.: Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 13(11), 5112 (2013).Google Scholar
30.Kiener, D. and Minor, A.M.: Source-controlled yield and hardening of Cu(1 0 0) studied by in situ transmission electron microscopy. Acta Mater. 59(4), 1328 (2011).Google Scholar