Skip to main content Accessibility help
×
Home

Direct correlation of R-line luminescence with rod-like defect evolution in ion-implanted and annealed silicon

  • S. Charnvanichborikarn (a1), J. Wong-Leung (a2), C. Jagadish (a3) and J.S. Williams (a3)

Abstract

A quantitative correlation between R-line luminescence at around 1.37 µm and {311} defect nature, size and concentration has been undertaken in silicon, following keV Si-implantation and subsequent annealing using photoluminescence spectroscopy and plan-view transmission electron microscopy. The formation and evolution of the rod-like defects were found to be dependent on annealing time at a temperature of 700 °C, but there was no simple correlation found between the density and size of those defects and the R-line intensity. In particular, whereas the presence of {311} defects is essential for observing R-line luminescence, both very small {311} defects at short annealing times and fully developed {311} defects at long annealing times do not contribute to such luminescence. We provide possible explanations for this behavior and suggest that the local (strain) environment around defects, the dopant level and impurities in the silicon substrate may all play a role in determining R-line intensity.

Copyright

Corresponding author

Address all correspondence to S. Charnvanichborikarn at charnvanichb1@llnl.gov

References

Hide All
1.Chason, E., Picraux, S.T., Poate, J.M., Borland, J.O., Current, M.I., Diaz de la Rubia, T., Eaglesham, D.J., Holland, O.W., Law, M.E., Magee, C.W., Mayer, J.W., Melngailis, J., and Tasch, A.F.: Ion beams in silicon processing and characterization. J. Appl. Phys. 81, 6513 (1997).
2.Libertino, S. and La Magna, A.: Damage formation and evolution in ion-implanted crystalline Si, in Materials Science with Ion Beams, Topics in Applied Physics Vol. 116, edited by Bernas, H. (Springer-Verlag, Berlin, 2010), pp. 147212.
3.Davies, G.: The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83 (1989).
4.Charnvanichborikarn, S.: Defect-Mediated Nanostructures and Luminescence Centres in Silicon. Ph.D. Thesis, The Australian National University (2011).
5.Davies, G., Lightowlers, E.C., and Ciechanowska, Z.E.: The 1018 meV (W or I1) vibronic band in silicon. J. Phys. C 20, 191 (1987).
6.Coomer, B.J., Goss, J.P., Jones, R., Öberg, S., and Briddon, P.R.: Interstitial aggregates and a new model for the I1/W optical centre in silicon. Physica B 273–274, 505 (1999).
7.Giri, P.K.: Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon. Semicond. Sci. Technol. 20, 638 (2005).
8.Schmidt, D.C., Svensson, B.G., Seibt, M., Jagadish, C., and Davies, G.: Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon. J. Appl. Phys. 88, 2309 (2000).
9.Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M.: Implantation and transient B diffusion in Si: the source of the interstitials. Appl. Phys. Lett. 65, 2305 (1994).
10.Yasutake, Y., Igarashi, J., Tana-ami, N., and Fukatsu, S.: An electric-field-active 1377-nm narrow-line Si light-emitting diode at 150 K. Opt. Express 17, 16739 (2009).
11.Matthews, M.D. and Ashby, S.J.: The dynamic observation of the formation of defects in silicon under electron and proton irradiation. Philos. Mag. 27, 1313 (1973).
12.Coffa, S., Libertino, S., and Spinella, C.: Transition from small interstitial clusters to extended {311} defects in ion-implanted Si. Appl. Phys. Lett. 76, 321 (2000).
13.Giri, P.K., Coffa, S., and Rimini, E.: Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon. Appl. Phys. Lett. 78, 291 (2001).
14.Davies, G., Harding, R., Jin, T., Mainwood, A., and Leung-Wong, J.: Optical studies of ion-implantation centres in silicon. Nucl. Instrum. Methods Phys. Res. B 186, 1 (2001).
15.Chou, C.T., Cockayne, D.J.H., Zou, J., Kringhøj, P., and Jagadish, C.: {111} defects in 1-MeV-silicon-ion-implanted silicon. Phys. Rev. B 52, 17223 (1995).
16.Lightowlers, E.C., Jeyanathan, L., Safonov, A.N., Higgs, V., and Davies, G.: Luminescence from rod-like defects and hydrogen related centres in silicon. Mater. Sci. Eng., B 24, 144 (1994).
17.Biersack, J.P. and Haggmark, L.G.: A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257 (1980).
18.Wong-Leung, J., Fatima, S., Jagadish, C., Fitz Gerald, J.D., Chou, C.T., Zou, J., and Cockayne, D.J.H.: Transmission electron microscopy characterization of secondary defects created by MeV Si, Ge, and Sn implantation in silicon. J. Appl. Phys. 88, 1312 (2000).
19.Libertino, S., Coffa, S., Spinella, C., La Magna, A., and Privitera, V.: Point defect diffusion and clustering in ion implanted c-Si. Nucl. Instrum. Methods Phys. Res. B 178, 25 (2001).
20.Cowern, N.E.B., Mannino, G., Stolk, P.A., Roozeboom, F., Huizing, H.G.A., van Berkum, J.G.M., Cristiano, F., Claverie, A., and Jaraíz, M.: Energetics of self-interstitial clusters in Si. Phys. Rev. Lett. 82, 4460 (1999).
21.Weman, H., Monemar, B., Oehrlein, G.S., and Jeng, S.J.: Strain-induced quantum confinement of carriers due to extended defects in silicon. Phys. Rev. B 42, 3109 (1990).
22.Harding, R.E., Davies, G., Hayama, S., Coleman, P.G., Burrows, C.P., and Wong-Leung, J.: Photoluminescence response of ion-implanted silicon. Appl. Phys. Lett. 89, 181917 (2006).
23.Moller, K., Jones, K.S., and Law, M.E.: Cross-sectional transmission electron microscopy analysis of {311} defects from Si implantation into silicon. Appl. Phys. Lett. 72, 2547 (1998).
24.Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraíz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E.: Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon. J. Appl. Phys. 81, 6031 (1997).
25.Pan, G.Z. and Tu, K.N.: Transmission electron microscopy on {113} rodlike defects and {111} dislocation loops in silicon-implanted silicon. J. Appl. Phys. 82, 601 (1997).
26.Takeda, S.: An atomic model of electron-irradiation-induced defects on {113} in Si. Jpn. J. Appl. Phys. 30, L639 (1991).
27.Haynes, T.E., Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., Jacobson, D.C., and Poate, J.M.: Interactions of ion-implantation-induced interstitials with boron at high concentrations in silicon. Appl. Phys. Lett. 69, 1376 (1996).
28.Brindos, R., Keys, P., Jones, K.S., and Law, M.E.: Effect of arsenic doping on {311} defect dissolution in silicon. Appl. Phys. Lett. 75, 229 (1999).
29.Higgs, V., Lightowlers, E.C., Norman, C.E., and Kightley, P.: Characterisation of dislocations in the presence of transition metal contamination. Mater. Sci. Forum 83–87, 1309 (1992).
30.Tereshchenko, A.N., Steinman, E.A., and Mazilkin, A.A.: Effect of copper on dislocation luminescence centers in silicon. Phys. Solid State 53, 369 (2011).

Direct correlation of R-line luminescence with rod-like defect evolution in ion-implanted and annealed silicon

  • S. Charnvanichborikarn (a1), J. Wong-Leung (a2), C. Jagadish (a3) and J.S. Williams (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed