Skip to main content Accessibility help

Determination of adsorption-controlled growth windows of chalcogenide perovskites

  • Stephen A. Filippone (a1), Yi-Yang Sun (a2) and R. Jaramillo (a1)
  • Please note a correction has been issued for this article.


Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with a band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Here we use computational thermodynamics to predict the pressure–temperature phase diagrams for select chalcogenide perovskites. Our calculations incorporate formation energies calculated by density functional theory, and empirical estimates of heat capacities. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These results can guide the adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy.


Corresponding author

Address all correspondence to R. Jaramillo at


Hide All
1. Nechache, R., Harnagea, C., Li, S., Cardenas, L., Huang, W., Chakrabartty, J., and Rosei, F.: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 6167 (2015).
2. Grinberg, I., West, D.V., Torres, M., Gou, G., Stein, D.M., Wu, L., Chen, G., Gallo, E.M., Akbashev, A.R., Davies, P.K., Spanier, J.E., and Rappe, A.M.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509512 (2013).
3. Berger, R.F. and Neaton, J.B.: Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211 (2012).
4. Choi, W.S., Chisholm, M.F., Singh, D.J., Choi, T., Jellison, G.E. Jr., and Lee, H.N.: Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012), ncomms1690.
5. Gou, G.Y., Bennett, J.W., Takenaka, H., and Rappe, A.M.: Post density functional theoretical studies of highly polar semiconductive Pb (Ti1−xNix)O3−x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B 83, 205115 (2011).
6. Xu, X.S., Ihlefeld, J.F., Lee, J.H., Ezekoye, O.K., Vlahos, E., Ramesh, R., Gopalan, V., Pan, X.Q., Schlom, D.G., and Musfeldt, J.L.: Tunable band gap in Bi(Fe1−xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010).
7. Parida, S., Satapathy, A., Sinha, E., Bisen, A., and Rout, S.K.: Effect of neodymium on optical bandgap and microwave dielectric properties of barium zirconate ceramic. Metall. Mater. Trans. A 46, 12771286 (2015).
8. Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R., and Ravichandran, J.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).
9. Brehm, J.A., Takenaka, H., Lee, C.-W., Grinberg, I., Bennett, J.W., Schoenberg, M.R., and Rappe, A.M.: Density functional theory study of hypothetical PbTiO3-based oxysulfides. Phys. Rev. B 89, 195202 (2014).
10. Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Deng, C., Gross, N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y.-Y., Zhang, S., and Zeng, H.: Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129135 (2016).
11. Meetsma, A., Wiegers, G.A., and de Boer, J.L.: Structure determination of SnZrS3 . Acta Crystallogr. C 49, 20602062 (1993).
12. Clearfield, A.: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 16, 135142 (1963).
13. Lee, C.-S., Kleinke, K.M., and Kleinke, H.: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 10491054 (2005).
14. Hahn, H. and Mutschke, U.: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269278 (1957).
15. Schmidt, L.: Superconductivity in PbNbS3 and PbTaS3 . Phys. Lett. A 31, 551552 (1970).
16. Lelieveld, R. and IJdo, D.J.W.: Sulphides with the GdFeO3 structure. Acta Crystallogr. B 36, 22232226 (1980).
17. Bennett, J.W., Grinberg, I., and Rappe, A.M.: Effect of substituting of S for O: the sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).
18. Sun, Y.-Y., Agiorgousis, M.L., Zhang, P., and Zhang, S.: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581585 (2015).
19. Kolb, B. and Kolpak, A.M.: First-principles design and analysis of an efficient, Pb-free ferroelectric photovoltaic absorber derived from ZnSnO3 . Chem. Mater. 27, 58995906 (2015).
20. Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., and Yan, Y.: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821829 (2016).
21. Wang, H., Gou, G., and Li, J.: Ruddlesden–Popper perovskite sulfides A3B2S7: a new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507513 (2016).
22. Ju, M.-G., Dai, J., Ma, L., and Zeng, X.C.: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 7, 1700216 (2017).
23. Tsao, J.Y.: Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, Boston, 1993).
24. Henini, M.: Molecular Beam Epitaxy: from Research to Mass Production (Elsevier, Amsterdam, 2013).
25. Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., and Brown, G.W.: Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107114 (1998).
26. Haislmaier, R.C., Stone, G., Alem, N., and Engel-Herbert, R.: Creating Ruddlesden–Popper phases by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109, 043102 (2016).
27. Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.H., Kang, Y.B., Melançon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., and Van Ende, M.-A.: FactSage thermochemical software and databases, 2010–2016. Calphad 54, 3553 (2016).
28. Kopp, H.: Investigations of the specific heat of solid bodies. Philos. Trans. R. Soc. Lond. 155, 71202 (1865).
29. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P.: Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 497, 713 (2010).
30. Csonka, G.I., Perdew, J.P., Ruzsinszky, A., Philipsen, P.H.T., Lebègue, S., Paier, J., Vydrov, O.A., and Ángyán, J.G.: Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: