Skip to main content Accessibility help

A cross-talk EGFR/VEGFR-targeted bispecific nanoprobe for magnetic resonance/near-infrared fluorescence imaging of colorectal cancer

  • Qian Wang (a1), Xinming Zhao (a1), Hao Yan (a2), Feiyu Kang (a2), Zhangfu Li (a3), Yanyan Qiao (a3) and Dan Li (a3)...


Due to the lack of an effective and noninvasive screening tool, the early diagnosis of colorectal cancer (CRC) is currently difficult. For the early diagnosis of CRC, we have developed Fe3O4-Dye800-single chain fragment variable (ScFv)egfr/vegfr nanoprobes. ScFvegfr/vegfr (ScFv2) conjugated onto Fe3O4 nanoprobes efficiently recognized CRC tumors in vitro and in vivo. Near-infrared fluorescence imaging modalities such as Dye800 were utilized simultaneously with magnetic resonance to enhance detection efficiency. Fe3O4-Dye800-ScFv2 successfully detected tiny CRC tumors; the synergistic ScFv2 successfully enhanced CRC targeting. Thus, Fe3O4-Dye800-ScFv2 nanoprobes may represent a new molecular imaging strategy for the early detection of CRC.


Corresponding author

Address all correspondence to Dan Li and Xinming Zhao at and


Hide All
1.Thomaidis, T., Maderer, A., Kornmann, M., Bauer, S.L., Trautmann, M., Schwarz, M., Neumann, W., Formentini, A., Lyros, O., Schad, A., Galle, P.R., and Moehler, M.: Predictive value of proteins related with the VEGFR and EGFR pathways in patients with stage II/III colorectal cancer receiving adjuvant treatment with fluorouracil, leucovorin plus/- irinotecan: translational results of the FOGT-4 trial. Gastroenterology 146, S326 (2014).
2.Thomaidis, T., Maderer, A., Formentini, A., Bauer, S., Trautmann, M., Schwarz, M., Neumann, W., Kittner, J.M., Schad, A., Link, K.H., Rey, J.W., Weinmann, A., Hoffman, A., Galle, P.R., Kornmann, M., and Moehler, M.: Proteins of the VEGFR and EGFR pathway as predictive markers for adjuvant treatment in patients with stage II/III colorectal cancer: results of the FOGT-4 trial. J Exp Clin Canc Res 33, 83 (2014).
3.Khan, K.: Colorectal cancer early MRI imaging predicts regorafenib response. Nat Rev Gastroenterol Hepatol. 14, 566 (2017).
4.Lee, D.H. and Lee, J.M.: Whole-body PET/MRI for colorectal cancer staging: is it the way forward? J. Magn. Reson. Imaging 45, 21 (2017).
5.Rezayan, A.H., Mousavi, M., Kheirjou, S., Amoabediny, G., Ardestani, M.S., and Mohammadnejad, J.: Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J. Magn. Magn. Mater. 420, 210 (2016).
6.Vargas-Osorio, Z., Argibay, B., Pineiro, Y., Vazquez-Vazquez, C., Lopez-Quintela, M.A., Alvarez-Perez, M.A., Sobrino, T., Campos, F., Castillo, J., and Rivas, J.: Multicore magnetic Fe3O4@C beads with enhanced magnetic response for MRI in brain biomedical applications. Ieee T Magn 52, 2300604 (2016).
7.Feng, L.L., Yang, D., He, F., Gai, S.L., Li, C.X., Dai, Y.L., and Yang, P.P.: A core-shell-satellite structured Fe3O4@g-C3N4-UCNPs-PEG for T-1/T-2-Weighted dual-modal MRI-guided photodynamic therapy. Adv. Healthc. Mater. 6, 1700502 (2017).
8.Qiao, H.Y., Wang, Y.B., Zhang, R.H., Gao, Q.S., Liang, X., Gao, L., Jiang, Z.H., Qiao, R.R., Han, D., Zhang, Y., Qiu, Y., Tian, J., Gao, M.Y., and Cao, F.: MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe3O4 nanoparticles. Biomaterials 112, 336 (2017).
9.Jiao, Y.F., Sun, Y.F., Tang, X.L., Ren, Q.G., and Yang, W.L.: Tumor-targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small 11, 1962 (2015).
10.Liu, F., Le, W.J., Mei, T.X., Wang, T.G., Chen, L.G., Lei, Y., Cui, S.B., Chen, B.D., Cui, Z., and Shao, C.W.: In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int. J. Nanomed. 11, 2195 (2016).
11.Mu, X.P., Zhang, F.Q., Kong, C.F., Zhang, H.M., Zhang, W.J., Ge, R., Liu, Y., and Jiang, J.L.: EGFR-targeted delivery of DOX-loaded Fe3O4@polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int. J. Nanomed. 12, 2899 (2017).
12.Chen, N., Shao, C., Li, S., Wang, Z.H., Qu, Y.M., Gu, W., Yu, C.J., and Ye, L.: Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interf Sci 457, 27 (2015).
13.Yan, H., Zhao, L., Shang, W., Liu, Z., Xie, W., Qiang, C., Xiong, Z., Zhang, R., Li, B., Sun, X., and Kang, F.: General synthesis of high-performing magneto-conjugated polymer core-shell nanoparticles for multifunctional theranostics. Nano Res. 10, 704 (2017).
14.Hu, H., Zhang, Y.F., Shukla, S., Gu, Y.N., Yu, X., and Steinmetz, N.F.: Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. Acs Nano 11, 9249 (2017).
15.Liu, H., Tan, Y., Xie, L.S., Yang, L., Zhao, J., Bai, J.X., Huang, P., Zhan, W.G., Wan, Q., Zou, C., Han, Y.L., and Wang, Z.Y.: Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging. J Colloid Interf Sci 478, 217 (2016).
16.Wang, P., Qu, Y.Z., Li, C., Yin, L., Shen, C.F., Chen, W., Yang, S.M., Bian, X.W., and Fang, D.C.: Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int. J. Nanomed. 10, 749 (2015).
17.Wang, Y.B., Chen, J.W., Yang, B., Qiao, H.Y., Gao, L., Su, T., Ma, S., Zhang, X.T., Li, X.J., Liu, G., Cao, J.B., Chen, X.Y., Chen, Y.D., and Cao, F.: In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 6, 272 (2016).
18.Yan, H., Shang, W., Sun, X., Zhao, L., Wang, J., Xiong, Z., Yuan, J., Zhang, R., Huang, Q., Wang, K., Li, B., Tian, J., Kang, F., and Feng, S.-S.: “All-in-One” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous Administration. Adv. Funct. Mater. 28, 1705710 (2018).
19.Tonra, J.R., Deevi, D.S., Corcoran, E., Li, H.L., Wang, S., Carrick, F.E., and Hicklin, D.J.: Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin. Cancer Res. 12, 2197 (2006).
20.Larsen, A.K., Ouaret, D., El Ouadrani, K., and Petitprez, A.: Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Therapeut 131, 80 (2011).
21.Jebali, A., and Dumaz, N.: The role of RICTOR downstream of receptor tyrosine kinase in cancers. Mol. Cancer 17, 1 (2018).
22.Funakoshi, T., Latif, A., and Gasky, M.D.: Safety and efficacy of addition of VEGFR and EGFR-family oral small-molecule tyrosine kinase inhibitors to cytotoxic chemotherapy in solid cancers: A systematic review and meta-analysis of randomized controlled trials. Cancer Treat. Rev. 40, 636 (2014).
23.Moehler, M., Thomaidis, T., Zeifri, C., Barhoom, T., Marquardt, J., Ploch, P., Schattenberg, J., Maderer, A., Schimanski, C.C., Weinmann, A., Woerns, M.A., Kranich, A.L., Warnecke, J.M., and Galle, P.R.: Inclusion of targeted therapies in the standard of care for metastatic colorectal cancer patients in a German cancer center: the more the better?! J Cancer Res Clin 141, 515 (2015).
24.Abdelgawad, M.A., Bakr, R.B., Alkhoja, O.A., and Mohamed, W.R.: Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem. 66, 88 (2016).
25.Chen, S.Q., Li, J., Li, Q., and Wang, Z.: Bispecific antibodies in cancer immunotherapy. Hum Vacc Immunother 12, 2491 (2016).
26.Hornig, N., Reinhardt, K., Kontermann, R.E., and Muller, D.: Combining a bispecific antibody with costimulatory antibody ligand fusion proteins in a human and murine model system for targeted cancer immunotherapy. Immunology 137, 708 (2012).
27.Zhou, S.J., Wei, J., Su, S., Chen, F.J., Qiu, Y.D., and Liu, B.R.: Strategies for bispecific single chain antibody in cancer immunotherapy. J. Cancer 8, 3689 (2017).
28.Arami, H., Khandhar, A.P., Tomitaka, A., Yu, E., Goodwill, P.W., Conolly, S.M., and Krishnan, K.M.: In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52, 251 (2015).
29.Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., and Muller, R.H.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surface B 18, 301 (2000).
30.Yan, H., Chen, Y., Sun, X.-D., Zhao, L.-Y., Zhang, C.-X., Bian, L., Yang, Y.-H., Liu, Y.-Z., Yuan, J., Yao, Y., and Wu, Q.: Controlled synthesis of Fe3O4 single crystalline spheres in one solvothermal system and their application in MRI. J Nanosci Nanotechno 17, 1983 (2017).
31.Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., and Cheon, J.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732 (2005).
32.Jun, Y.W., Seo, J.W., and Cheon, A.: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts Chem Res 41, 179 (2008).
33.Shang, H., Chang, W.S., Kan, S., Majetich, S.A., and Lee, G.U.: Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22, 2516 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Wang et al. supplementary material
Figures S1-S3

 Word (504 KB)
504 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed