Skip to main content Accessibility help
×
Home

Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting

  • G. G. Flores-Rojas (a1) (a2), F. López-Saucedo (a1), E. Bucio (a1) and T. Isoshima (a2)

Abstract

Functionalization of silicone rubber films with lysozyme was achieved by grafting copolymerization and its chemical activation allowing the covalent immobilization of the enzyme. The new materials were characterized by means of Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, contact angle, atomic force microscopy, and mechanical properties of films. The enzymatic activity of films was studied by a suspension of lyophilized Micrococcus lysodeikticus. The activity test was inquired at different pH and temperatures, exhibiting enzymatic activity 20 °C above the free lysozyme, and at pH = 5 where the free lysozyme did not show activity.

Copyright

Corresponding author

Address all correspondence to G. G. Flores-Rojas at ggabofo@hotmail.com and E. Bucio at ebucio@nucleares.unam.mx

References

Hide All
1. Cappannella, E., Benucci, I., Lombardelli, C., Liburdi, K., Bavaro, T. and Esti, M.: Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study. Food Chem. 210, 49 (2016).
2. Wanga, J., Qin, L., Lin, J., Zhu, J., Zhang, Y., Liu, J. and Van der Bruggen, B.: Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Chemical Eng. J. 323, 56 (2017).
3. Harding, J.L. and Reynolds, M.M.: Combating medical device fouling. Trends Biotechnol. 32, 140 (2014).
4. Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L. and Costerton, J.W.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967 (2012).
5. Mérian, T. and Goddard, J.M.: Advances in nonfouling materials: perspectives for the food industry. J. Agric. Food Chem. 60, 2943 (2012).
6. Kacar, Y. and Arıca, M.Y.: Preparation of reversibly immobilized lysozyme onto Procion Green H-E4BD-attached poly(hydroxyethylmethacrylate) film for hydrolysis of bacterial cells. Food Chem. 75, 325 (2001).
7. Flores-Rojas, G.G., Pino-Ramos, V.H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C. and Bucio, E.: Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-coglycidylmethacrylate). European. Polymer J. 95, 27 (2017).
8. Guadarrama-Zempoalteca, Y., Díaz-Gómez, L., Meléndez-Ortiz, H.I., Concheiro, A., Alvarez-Lorenzo, C. and Bucio, E.: Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Rad. Phys. Chem. 126, 1 (2016).
9. Neves-Petersen, M.T., Snabe, T., Klitgaard, S., Duroux, M. and Petersen, S.B.: Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces. Protein Sci. 15, 343 (2006).
10. Masoom, M. and Townshend, A.: Simultaneous determination of sucrose and glucose in mixtures by flow injection analysis with immobilized enzymes. Anal. Chim. Acta 171, 185 (1985).
11. Sheldon, R.A.: Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289 (2007).
12. Prodanović, O., Prokopijević, M., Spasojević, D., Stojanović, Ž., Radotić, K., Knežević-Jugović, Z.D. and Prodanović, R.: Improved covalent immobilization of horseradish peroxidase on Macroporous Glycidyl methacrylate-based copolymers. Appl. Biochem. Biotechnol. 168, 1288 (2012).
13. Jin, J., Han, Y., Zhang, C., Liu, J., Jiang, W., Yin, J. and Liang, H.: Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: a combined study using QCM-D and DPI. Colloids Surf. B Biointerfaces 136, 838 (2015).
14. Xu, P., Zeng, Q., Cao, Y., Ma, P., Dong, W. and Chen, M.: Interfacial modification on polyhydroxyalkanoates/starch blend by grafting in-situ. Carboh. Polym. 174, 716 (2017).
15. Wang, L., Shi, Y., Chen, S., Wang, W., Tian, M., Ning, N. and Zhang, L.: Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chemical Eng. J. 314, 583 (2017).
16. Ko, J.S., Cho, K., Han, S.W., Sung, H.K., Baek, S.W., Koh, W.-G. and Yoon, J.S.: Hydrophilic surface modification of poly(methyl methacrylate)-basedocular prostheses using poly(ethylene glycol) grafting. Colloids Surf. B Biointerfaces 158, 287 (2017).
17. Saeki, D., Nagao, S., Sawada, I., Ohmukai, Y., Maruyama, T. and Matsuyama, H.: Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme. J. Membr. Sci. 428, 403 (2013).
18. Minko, S.: Grafting on solid surfaces: “Grafting-to” and “grafting-from” methods, in Polymer Surfaces and Interfaces, edited by Stamm, M. (Springer, Berlin, 2008), pp. 215, 234.
19. Noein, L., Haddadi-Asl, V. and Salami-Kalajahi, M.: Grafting of pH-sensitive poly (N,Ndimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto HNTS via surface-initiated atom transfer radical polymerization for controllable drug release. Inter. J. Polymeric Mater. Polymeric Biomater. 66, 123 (2017).
20. Pino-Ramos, V.H., Alvarez-Lorenzo, C., Concheiro, A. and Bucio, E.: One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Design. Monomers Polymers 20, 33 (2017).
21. López-Saucedo, F., Alvarez-Lorenzo, C., Concheiro, A. and Bucio, E.: Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Rad. Phys. Chem. 132, 1 (2017).
22. Flores-Rojas, G.G. and Bucio, E.: Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Rad. Phys. Chem. 127, 21 (2016).
23. Meaburn, G.M., Hosszu, J.L. and Cole, C.M.: Radiation Grafting of Methacrylates onto Silicone Rubber: Prototype Burn Wound Dressing. Inter. J. Appl. Rad. Isotope 29, 233 (1978).
24. Tokuyama, H., Naohara, S., Fujioka, M. and Sakohara, S.: Preparation of molecular imprinted thermosensitive gels grafted onto polypropylene by plasma-initiated graft polymerization. React. Funct. Polymers 68, 182 (2008).
25. Khelifa, F., Ershov, S., Habibi, Y., Snyders, R. and Dubois, P.: Free-radical-induced grafting from plasma polymer surfaces. Chem. Rev. 116, 3975 (2016).
26. Domenichelli, I., Coiai, S., Pinzino, C., Taddei, S., Martinelli, E. and Cicogna, F.: Polymer surface modification by photografting of functional nitroxides. European Polymer J. 87, 24 (2017).
27. Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C. and Dugo, G.: The role of water in protein's behavior: The two dynamical crossovers studied by NMR and FTIR techniques. Comp. Struct. Biotechnol. J. 13, 33 (2015).
28. Castillo, E.-J., Koenig, J.L. and Anderson, J.M.: Protein adsorption on hydrogels: II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials 6, 338 (1985).
29. Yang, P.W., Mantsch, H.H., Arrondo, J.L.R., Saint-Girons, I., Guillou, Y., Cohen, G.N. and Barzu, O.: Fourier transform infrared investigation of the Escherichia coli methionine aporepressor. Biochemestry 26, 2706 (1987).
30. Careri, G. and Giansanti, A.: Lysozyme film hydration events: an IR and gravimetric study. Biopolymers 18, 1187 (1979).
Type Description Title
WORD
Supplementary materials

Flores-Rojas supplementary material
Flores-Rojas supplementary material 1

 Word (509 KB)
509 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed