Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T23:32:10.646Z Has data issue: false hasContentIssue false

Controlling the nanoscale morphology and structure of the ZnO/MnO2 system for efficient transparent supercapacitors

Published online by Cambridge University Press:  21 March 2017

M. A. Borysiewicz*
Affiliation:
Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
M. Wzorek
Affiliation:
Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
M. Ekielski
Affiliation:
Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
J. Kaczmarski
Affiliation:
Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
T. Wojciechowski
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
*
Address all correspondence to M. A. Borysiewicz at mbory@ite.waw.pl
Get access

Abstract

We discuss relationships between transparent supercapacitor performance and the morphology of its ZnO nanostructured electrodes. The electrodes with different morphologies were prepared by magnetron sputtering and postdeposition annealing. They were decorated with MnO2 nanostructures and tested in symmetric transparent supercapacitors. The capacitances for discharging at 10 µA/cm2 were in the range of 20–53 µF/cm2, meaning that an increase of 250% in capacitance can be obtained by optimizing the electrode morphology. Optimal morphologies were hierarchical with a large range of pore sizes available. The worst performing had the smallest range of pore sizes. Best devices exhibited transparencies above 90%.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fortunato, E., Barquinha, P., and Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945 (2012).Google Scholar
2. Gao, K., Shao, Z., Wu, X., Wang, X., Zhang, Y., Wang, W., and Wang, F.: Paper-based transparent flexible thin film supercapacitors. Nanoscale 5, 5307 (2013).Google Scholar
3. Ge, J., Cheng, G., and Chen, L.: Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 3, 3084 (2011).Google Scholar
4. Kanninen, P., Dang Luong, N., Sinh, L.H., Anoshkin, I.V., Tsapenko, A., Seppälä, J., Nasibulin, A.G., and Kallio, T.: Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 27, 235403 (2016).Google Scholar
5. Liu, X.Y., Gao, Y.Q., and Yang, G.W.: A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 8, 4227 (2016).CrossRefGoogle ScholarPubMed
6. Borysiewicz, M.A., Wzorek, M., Mysliwiec, M., Kaczmarski, J., and Ekielski, M.: MnO2 ultrathin films deposited by means of magnetron sputtering: relationships between process conditions, structural properties and performance in transparent supercapacitors. Superlattices Microstruct. 100, 1213 (2016).Google Scholar
7. Lyubchyk, A., Vicente, A., Alves, P.U., Catela, B., Soule, B., Mateus, T., Mendes, M.J., Águas, H., Fortunato, E., and Martins, R.: Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature. Phys. Status Solidi A 213, 2317 (2016).CrossRefGoogle Scholar
8. Beguin, F. and Frąckowiak, E.: Supercapacitors: Materials, Systems and Applications, 1st reprint, (Wiley-VCH Verlag, Weinheim, 2013), p. 185.Google Scholar
9. Borysiewicz, M.A., Wojciechowski, T., Dynowska, E., Kamińska, E., and Piotrowska, A.: Investigation of porous Zn growth mechnism during Zn reactive sputter deposition. Acta Phys. Polon. A 125, 1144 (2014).CrossRefGoogle Scholar
10. Borysiewicz, M.A., Dynowska, E., Kolkovsky, V., Dyczewski, J., Wielgus, M., Kamińska, E., and Piotrowska, A.: From porous to dense thin ZnO films through reactive DC sputter deposition onto Si (100) substrates. Phys. Status Solidi A 209, 2463 (2012).Google Scholar
11. Masłyk, M., Borysiewicz, M.A., Wzorek, M., Wojciechowski, T., Kwoka, M., and Kamińska, E.: Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering. Appl. Surf. Sci. 389, 287 (2016).CrossRefGoogle Scholar
12. Janotti, A. and van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).Google Scholar
13. Luo, Y.: Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 61, 1893 (2007).Google Scholar
14. Wang, G., Lu, X., Ling, Y., Zhai, T., Wang, H., Tong, Y., and Li, Y.: LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6, 10296 (2012).CrossRefGoogle ScholarPubMed
15. Zhong, H., Xu, F., Li, Z., Fu, R., and Wu, D.: High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Nanoscale 5, 4678 (2013).Google Scholar
16. Dutta, S., Bhaumik, A., and Wu, K.C-W.: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).Google Scholar
17. Leyva-García, S., Lozano-Castelló, D., Morallón, E., and Cazorla-Amorós, D.: Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. J. Mater. Chem. A 4, 4570 (2016).Google Scholar
18. Khalid, S., Cao, C., Wang, L., and Zhu, Y.: Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699 (2016).CrossRefGoogle ScholarPubMed
19. Project Web page: http://www.naczo.ite.waw.pl/en/home.html (accessed March 14, 2017).Google Scholar
Supplementary material: PDF

Borysiewicz supplementary material

Figures S1-S11

Download Borysiewicz supplementary material(PDF)
PDF 724.5 KB