Skip to main content Accessibility help
×
Home

Consolidation of commercial-size UO2 fuel pellets using spark plasma sintering and microstructure/microchemical analysis

  • Bowen Gong (a1), Tiankai Yao (a1), Cai Lu (a2), Peng Xu (a2), Edward Lahoda (a2) and Jie Lian (a1)...

Abstract

The development of advanced fuel fabrication technologies is important for developing accident-tolerant fuels and engineering fuels for safer and more effective nuclear energy systems. In this work, commercial-size uranium dioxide (UO2) fuel pellets with a theoretical density of 95% were consolidated by spark plasma sintering (SPS) at 1600°C for 5 min. Systematic investigations suggest uniform densification and stoichiometric UO2 with an ideal fluorite structure across the commercial-size fuel pellet, but with a distributed grain structure because of non-uniform distribution of temperature during sintering. This work demonstrates a great potential of using SPS for fabricating nuclear fuels at a cost-effective manner.

Copyright

Corresponding author

Address all correspondence to Jie Lian at lianj@rpi.edu

References

Hide All
1.IAEA: Current trends in nuclear fuel for power reactors. (2007) Available at: https://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att5_en.pdf (accessed June 17, 2018).
2.IAEA: Accident tolerant fuel concepts for light water reactors. (2014) Available at: https://www.iaea.org/publications/10972/accident-tolerant-fuel-concepts-for-light-water-reactors (accessed June 17, 2018).
3.Wolfe, R.A. and Kaufman, S.F.: Mechanical properties of oxide fuels. (1967) Available at: https://www.osti.gov/servlets/purl/4511674 (accessed June 17, 2018).
4.Amato, I., Colombo, R.L., and Balzari, A.M.P.: Hot-pressing of uranium dioxide. J. Nucl. Mater. 20, 210 (1966).
5.Williams, J., Barnes, E., Scott, R., and Hall, A.: Sintering of uranium oxides of composition UO2 to U3O8 in various atmospheres. J. Nucl. Mater. 1, 28 (1959).
6.Carrea, A.J.: Sintering of uranium dioxide in an atmosphere of controlled hydrogen content. J. Nucl. Mater. 8, 275 (1963).
7.Kutty, T.R.G., Chandrasekharan, K.N., Panakkal, J.P., and Ghosh, J.K.: Fracture-toughness and fracture surface-energy of sintered uranium-dioxide fuel pellets. J. Mater. Sci. Lett. 6, 260 (1987).
8.Novikov, V.V., Sivov, R.B., Mikheev, E.N., and Fedotov, A.V.: Fracture toughness of vver and pwr uranium-dioxide fuel pellets with different grain size. At. Energy 118, 117 (2015).
9.Yamada, K., Kurosaki, K., Uno, M., and Yamanaka, S.: Evaluation of thermal properties of uranium dioxide by molecular dynamics. J. Alloys Compd. 307, 10 (2000).
10.Arima, T., Yamasaki, S., Inagaki, Y., and Idemitsu, K.: Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K. J. Alloys Compd. 400, 43 (2005).
11.Harding, J.H. and Martin, D.G.: A recommendation for the thermal-conductivity of UO2. J. Nucl. Mater. 166, 223 (1989).
12.Watanabe, T., Sinnott, S.B., Tulenko, J.S., Grimes, R.W., Schelling, P.K., and Phillpot, S.R.: Thermal transport properties of uranium dioxide by molecular dynamics simulations. J. Nucl. Mater. 375, 388 (2008).
13.Wei, S., Zhang, Z.H., Shen, X.B., Wang, F.C., Sun, M.Y., Yang, R., and Lee, S.K.: Simulation of temperature and stress distributions in functionally graded materials synthesized by a spark plasma sintering process. Comput. Mater. Sci. 60, 168 (2012).
14.Ge, L.H., Subhash, G., Baney, R.H., Tulenko, J.S., and McKenna, E.: Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). J. Nucl. Mater. 435, 1 (2013).
15.Tyrpekl, V., Naji, M., Holzhauser, M., Freis, D., Prieur, D., Martin, P., Cremer, B., Murray-Farthing, M., and Cologna, M.: On the role of the electrical field in spark plasma sintering of UO2+x. Sci. Rep. 7, 46625 (2017).
16.Yao, T.K., Scott, S.M., Xin, G.Q., Gong, B.W., and Lian, J.: Dense nanocrystalline UO2+x fuel pellets synthesized by high pressure spark plasma sintering. J. Am. Ceram. Soc. 101, 1105 (2018).
17.Yao, T.K., Mo, K., Yun, D., Nanda, S., Yacout, A.M., and Lian, J.: Grain growth and pore coarsening in dense nano-crystalline UO2+x fuel pellets. J. Am. Ceram. Soc. 100, 2651 (2017).
18.Sopicka-lizer, M.: Introduction to mechanochemical processing. (Woodhead Publishing, Cambridge, England, 2010), p. 1.
19.Wank, A. and Wielage, B.: High energy ball milling – a promising route for production of tailored thermal spray consumables. (Conference on Modern wear and corrosion resistant coatings obtained by thermal spraying, Warsaw, Poland, 2003).
20.Teske, K., Ullmann, H., and Rettig, D.: Investigation of the oxygen activity of oxide fuels and fuel-fission product systems by solid electrolyte techniques. Part I: qualification and limitations of the method. J. Nucl. Mater. 116, 260 (1983).
21.Ge, L.H., Subhash, G., Baney, R.H., and Tulenko, J.S.: Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering. J. Eur. Ceram. Soc. 34, 1791 (2014).
22.Gossé, S., Guéneau, C., Alpettaz, T., Chatain, S., Chatillon, C., and Le Guyadec, F.: Kinetic study of the UO2/C interaction by high-temperature mass spectrometry. Nucl. Eng. Des. 238, 2866 (2008).
23.Gossé, S., Guéneau, C., Chatillon, C., and Chatain, S.: Critical review of carbon monoxide pressure measurements in the uranium–carbon–oxygen ternary system. J. Nucl. Mater. 352, 13 (2006).
24.Burke, J.E. and Turnbull, D.: Recrystallization and grain growth. Prog. Met. Phys. 3, 220 (1952).
25.Kingery, W.D. and Francois, B.: Grain growth in porous compacts. J. Am. Ceram. Soc. 48, 546 (1965).
26.Nichols, F.A.: Theory of grain growth in porous compacts. J. Appl. Phys. 37, 4599 (1966).
27.Diatta, J., Antou, G., Pradeilles, N., and Maître, A.: Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J. Eur. Ceram. Soc. 37, 4849 (2017).
28.Mondalek, P., Silva, L., and Bellet, M.: A numerical model for powder densification by sps technique. Adv. Eng. Mater. 13, 587 (2011).
29.Wang, C., Zhao, Z., and Cheng, L.F.: Finite element modeling of temperature distribution in spark plasma sintering. Key Eng. Mater. 434–435, 808 (2010).
30.Graves, P.R.: Raman microprobe spectroscopy of uranium-dioxide single-crystals and ion-implanted polycrystals. Appl. Spectrosc. 44, 1665 (1990).
31.White, W.B.: Application of infrared spectroscopy to order-disorder problems in simple ionic solids. Mater. Res. Bull. 2, 381 (1967).
32.Razdan, M. and Shoesmith, D.W.: Influence of trivalent-dopants on the structural and electrochemical properties of uranium dioxide (UO2). J. Electrochem. Soc. 161, H105 (2014).
33.Razdan, M. and Shoesmith, D.W.: The electrochemical reactivity of 6.0 wt% gd-doped UO2 in aqueous carbonate/bicarbonate solutions. J. Electrochem. Soc. 161, H225 (2014).
34.Allen, G.C., Butler, I.S., and Tuan, N.A.: Characterization of uranium-oxides by micro-Raman spectroscopy. J. Nucl. Mater. 144, 17 (1987).
35.Palacios, M.L. and Taylor, S.H.: Characterization of uranium oxides using in situ micro-Raman spectroscopy. Appl. Spectrosc. 54, 1372 (2000).
36.Manara, D. and Renker, B.: Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J. Nucl. Mater. 321, 233 (2003).
37.Naji, M., Colle, J.Y., Benes, O., Sierig, M., Rautio, J., Lajarge, P., and Manara, D.: An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples. J. Raman Spectrosc. 46, 750 (2015).
38.Chollet, M., Prieur, D., Bohler, R., Belin, R., and Manara, D.: The melting behaviour of uranium/neptunium mixed oxides. J. Chem. Thermodyn. 89, 27 (2015).
39.Livneh, T. and Sterer, E.: Effect of pressure on the resonant multiphonon Raman scattering in UO2. Phys. Rev. B 73, 085118 (2006).
40.Desgranges, L., Guimbretiere, G., Simon, P., Jegou, C., and Caraballo, R.: A possible new mechanism for defect formation in irradiated UO2. Nucl. Instrum. Methods. B 315, 169 (2013).
41.Desgranges, L., Baldinozzi, G., Simon, P., Guimbretière, G., and Canizares, A.: Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J. Raman Spectrosc. 43, 455 (2012).
42.Razdan, M.a.S. and David, W: The electrochemical reactivity of 6.0 wt% Gd-doped UO2 in aqueous carbonate/bicarbonate solutions. J. Electrochem. Soc. 161, H225 (2014).
43.He, H. and Shoesmith, D.: Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x). Phys. Chem. Chem. Phys. 12, 8108 (2010).
44.Ho Mer Lin, D., Manara, D., Lindqvist-Reis, P., Fanghänel, T., and Mayer, K.: The use of different dispersive Raman spectrometers for the analysis of uranium compounds. Vib. Spectrosc. 73, 102 (2014).
45.Pointurier, F. and Marie, O.: Identification of the chemical forms of uranium compounds in micrometer-size particles by means of micro-Raman spectrometry and scanning electron microscope. Spectrochim. Acta Part B 65, 797 (2010).
46.Schoenes, J.: Recent spectroscopic studies of UO2. J. Chem. Soc. Faraday Trans. 2 83, 1205 (1987).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed