Skip to main content Accessibility help
×
Home

Array pattern effects on the voltage output of vertically aligned BaTiO3 nanotubular flexible piezoelectric nanogenerator

  • Camelle Kaye A. Aleman (a1), James Albert B. Narvaez (a1), Gabriel Drix B. Lopez (a1) and Candy C. Mercado (a1)

Abstract

The advancement of lead-free piezoelectric nanogenerators (PENGs) for flexible electronics necessitates designing more efficient systems for improved energy storage capacity. In this light, the effects of patterning BaTiO3 nanotubes within PENG on the electromechanical properties of the device were investigated. The PENGs comprised a sandwich structure of Ti–BaTiO3–graphite–Ti encapsulated in polydimethylsiloxane. Four patterns of vertically aligned BaTiO3 nanotubes were synthesized via the hydrothermal conversion of selectively-anodized TiO2 nanotubes. The highest output voltage reached up to 1.9 V. Decreasing the nanotube array spacing and pattern diameter increased the lateral displacement of BaTiO3 therefore, increasing the output voltage of the device.

Copyright

Corresponding author

Address all correspondence to Candy C. Mercado at ccmercado1@up.edu.ph

References

Hide All
1.Falcão, A.: Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. (2010). doi:10.1016/j.rser.2009.11.003.
2.Lin, Z., Yang, Y., Wu, J., Liu, Y., Zhang, F., and Wang, Z.: BaTiO3 nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. (2012). doi:10.1021/jz301805f.
3.Messing, G., Sabolsky, E., Kwon, S., and Trolier-McKinstry, S.: Templated grain growth of textured piezoelectric ceramics. Key Eng. Mater. (2001). doi:10.4028/www.scientific.net/KEM.206-213.1293.
4.Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., and Kiguchi, T.: Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. (2005). doi:10.1063/1.1957130.
5.Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T.: Domain wall engineering in lead-free piezoelectric grain-oriented ceramics. Ferroelectrics (2008). doi:10.1080/00150190802408531.
6.Wang, Z., Wang, X., Song, J., Liu, J., and Gao, Y.: Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Computing. (2008). doi:10.1109/MPRV.2008.14.
7.Kumar, B. and Kim, S.: Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy (2012). doi:10.1016/j.nanoen.2012.02.001.
8.Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z., and Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano (2012). doi:10.1021/nn3016585.
9.Tsege, E., Kim, G., Annapureddy, V., Kim, B., Kim, H., and Hwang, Y.: A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO3 nanotube arrays on a Ti-mesh substrate. RSC Adv. (2016). doi:10.1039/C6RA13482C.
10.Yu, J. and Junaho, C.: Nanocrystalline barium titanate, Encyclopedia of Nanoscience and Nanotechnology, Vol. 6, no. 416 (2004), pp. 389416.
11.Fan, F., Tang, W., and Wang, Z.: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. (2016). doi:10.1002/adma.201504299.
12.Zhao, Y., Liao, Q., Zhang, G., Zhang, Z., Liang, Q., Liao, X., and Zhang, Y.: High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy (2015). doi:10.1016/j.nanoen.2014.11.061.
13.Yan, J. and Jeong, Y.: High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Interfaces (2016). doi:10.1021/acsami.6b02177.
14.Lencka, M. and Riman, R.: Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem. Mater (1993). doi:10.1021/cm00025a014.
15.Muñoz-Tabares, J., Bejtka, K., Lamberti, A., Garino, N., Bianco, S., Quaglio, M., Pirri, C., and Chiodoni, A.: Nanostructural evolution of one-dimensional BaTiO3 structures by hydrothermal conversion of vertically aligned TiO2 nanotubes. Nanoscale (2016). doi:10.1039/C5NR07283B.
16.Zhao, J., Wang, X., Chen, R., and Li, L.: Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater. Lett. (2005). doi:10.1016/j.matlet.2005.02.075.
17.Rollins, K., Olsen, R., Egbert, J., Jensen, D., Olsen, K., and Garrett, B.: Pile spacing effects on lateral pile group behavior: load tests. J. Geotechnol. Geoenviron. Eng. (2006). doi:10.1061/(ASCE)1090-0241(2006)132:10(1262).
18.Chore, H., Ingle, R., and Sawant, V.: Parametric study of laterally loaded pile groups using simplified F.E. models. Coupled Syst. Mech. (2012). doi:10.12989/csm.2012.1.1.001.
19.Terzaghi, K.: Evaluation of coefficients of subgrade reaction. Géotechnique (1955).
20.Boominathan, A. and Lakshmi, T.: Flexural behavior of single piles in clay under lateral excitation. In Proceedings of 13th World Conference on Earthquake Engineering, Auckland, New Zealand, Presented in 2000 (2004).
21.Gao, Z., Zhou, J., Gu, Y., Fei, P., Hao, Y., Bao, G., and Wang, Z.: Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. (2009). doi:10.1063/1.3125449.
22.Marutake, M.: A calculation of physical constants of ceramic barium titanate. J. Phys. Soc. Japan (1956). doi:10.1143/JPSJ.11.807.
23.System Advance Co., Ltd.: Photomask specifications/characteristic (2019). https://www.sys-ad.com/e-tokusei.html. (accessed December 2019).
24.American Elements: Titanium foil (2019). https://www.americanelements.com/titanium-foil-7440-32-6. (accessed December 2019).
25.Boylan, J.: Carbon-graphite materials (2019). https://www.azom.com/properties.aspx?ArticleID=516. 29 May (accessed December 2019).
26.Johnston, I.D., McCluskey, D.K., Tan, C.K.L., and Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. (2014). doi:10.1088/0960-1317/24/3/035017.
Type Description Title
WORD
Supplementary materials

Aleman et al. supplementary material
Table S1

 Word (17 KB)
17 KB

Array pattern effects on the voltage output of vertically aligned BaTiO3 nanotubular flexible piezoelectric nanogenerator

  • Camelle Kaye A. Aleman (a1), James Albert B. Narvaez (a1), Gabriel Drix B. Lopez (a1) and Candy C. Mercado (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.