Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-26T17:03:29.210Z Has data issue: false hasContentIssue false

Array pattern effects on the voltage output of vertically aligned BaTiO3 nanotubular flexible piezoelectric nanogenerator

Published online by Cambridge University Press:  22 July 2020

Camelle Kaye A. Aleman
Affiliation:
Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines Diliman, Quezon City1100, Philippines
James Albert B. Narvaez
Affiliation:
Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines Diliman, Quezon City1100, Philippines
Gabriel Drix B. Lopez
Affiliation:
Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines Diliman, Quezon City1100, Philippines
Candy C. Mercado*
Affiliation:
Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines Diliman, Quezon City1100, Philippines
*
Address all correspondence to Candy C. Mercado at ccmercado1@up.edu.ph
Get access

Abstract

The advancement of lead-free piezoelectric nanogenerators (PENGs) for flexible electronics necessitates designing more efficient systems for improved energy storage capacity. In this light, the effects of patterning BaTiO3 nanotubes within PENG on the electromechanical properties of the device were investigated. The PENGs comprised a sandwich structure of Ti–BaTiO3–graphite–Ti encapsulated in polydimethylsiloxane. Four patterns of vertically aligned BaTiO3 nanotubes were synthesized via the hydrothermal conversion of selectively-anodized TiO2 nanotubes. The highest output voltage reached up to 1.9 V. Decreasing the nanotube array spacing and pattern diameter increased the lateral displacement of BaTiO3 therefore, increasing the output voltage of the device.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Falcão, A.: Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. (2010). doi:10.1016/j.rser.2009.11.003.CrossRefGoogle Scholar
Lin, Z., Yang, Y., Wu, J., Liu, Y., Zhang, F., and Wang, Z.: BaTiO3 nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. (2012). doi:10.1021/jz301805f.CrossRefGoogle ScholarPubMed
Messing, G., Sabolsky, E., Kwon, S., and Trolier-McKinstry, S.: Templated grain growth of textured piezoelectric ceramics. Key Eng. Mater. (2001). doi:10.4028/www.scientific.net/KEM.206-213.1293.CrossRefGoogle Scholar
Wada, S., Yako, K., Kakemoto, H., Tsurumi, T., and Kiguchi, T.: Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. (2005). doi:10.1063/1.1957130.CrossRefGoogle Scholar
Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T.: Domain wall engineering in lead-free piezoelectric grain-oriented ceramics. Ferroelectrics (2008). doi:10.1080/00150190802408531.CrossRefGoogle Scholar
Wang, Z., Wang, X., Song, J., Liu, J., and Gao, Y.: Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Computing. (2008). doi:10.1109/MPRV.2008.14.CrossRefGoogle Scholar
Kumar, B. and Kim, S.: Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy (2012). doi:10.1016/j.nanoen.2012.02.001.CrossRefGoogle Scholar
Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z., and Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano (2012). doi:10.1021/nn3016585.CrossRefGoogle ScholarPubMed
Tsege, E., Kim, G., Annapureddy, V., Kim, B., Kim, H., and Hwang, Y.: A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO3 nanotube arrays on a Ti-mesh substrate. RSC Adv. (2016). doi:10.1039/C6RA13482C.CrossRefGoogle Scholar
Yu, J. and Junaho, C.: Nanocrystalline barium titanate, Encyclopedia of Nanoscience and Nanotechnology, Vol. 6, no. 416 (2004), pp. 389416.Google Scholar
Fan, F., Tang, W., and Wang, Z.: Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. (2016). doi:10.1002/adma.201504299.CrossRefGoogle ScholarPubMed
Zhao, Y., Liao, Q., Zhang, G., Zhang, Z., Liang, Q., Liao, X., and Zhang, Y.: High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy (2015). doi:10.1016/j.nanoen.2014.11.061.Google Scholar
Yan, J. and Jeong, Y.: High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl. Mater. Interfaces (2016). doi:10.1021/acsami.6b02177.Google ScholarPubMed
Lencka, M. and Riman, R.: Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem. Mater (1993). doi:10.1021/cm00025a014.CrossRefGoogle Scholar
Muñoz-Tabares, J., Bejtka, K., Lamberti, A., Garino, N., Bianco, S., Quaglio, M., Pirri, C., and Chiodoni, A.: Nanostructural evolution of one-dimensional BaTiO3 structures by hydrothermal conversion of vertically aligned TiO2 nanotubes. Nanoscale (2016). doi:10.1039/C5NR07283B.CrossRefGoogle Scholar
Zhao, J., Wang, X., Chen, R., and Li, L.: Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater. Lett. (2005). doi:10.1016/j.matlet.2005.02.075.CrossRefGoogle Scholar
Rollins, K., Olsen, R., Egbert, J., Jensen, D., Olsen, K., and Garrett, B.: Pile spacing effects on lateral pile group behavior: load tests. J. Geotechnol. Geoenviron. Eng. (2006). doi:10.1061/(ASCE)1090-0241(2006)132:10(1262).Google Scholar
Chore, H., Ingle, R., and Sawant, V.: Parametric study of laterally loaded pile groups using simplified F.E. models. Coupled Syst. Mech. (2012). doi:10.12989/csm.2012.1.1.001.CrossRefGoogle Scholar
Terzaghi, K.: Evaluation of coefficients of subgrade reaction. Géotechnique (1955).CrossRefGoogle Scholar
Boominathan, A. and Lakshmi, T.: Flexural behavior of single piles in clay under lateral excitation. In Proceedings of 13th World Conference on Earthquake Engineering, Auckland, New Zealand, Presented in 2000 (2004).Google Scholar
Gao, Z., Zhou, J., Gu, Y., Fei, P., Hao, Y., Bao, G., and Wang, Z.: Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. (2009). doi:10.1063/1.3125449.CrossRefGoogle ScholarPubMed
Marutake, M.: A calculation of physical constants of ceramic barium titanate. J. Phys. Soc. Japan (1956). doi:10.1143/JPSJ.11.807.CrossRefGoogle Scholar
System Advance Co., Ltd.: Photomask specifications/characteristic (2019). https://www.sys-ad.com/e-tokusei.html. (accessed December 2019).Google Scholar
American Elements: Titanium foil (2019). https://www.americanelements.com/titanium-foil-7440-32-6. (accessed December 2019).Google Scholar
Boylan, J.: Carbon-graphite materials (2019). https://www.azom.com/properties.aspx?ArticleID=516. 29 May (accessed December 2019).Google Scholar
Johnston, I.D., McCluskey, D.K., Tan, C.K.L., and Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. (2014). doi:10.1088/0960-1317/24/3/035017.CrossRefGoogle Scholar
Supplementary material: File

Aleman et al. supplementary material

Table S1

Download Aleman et al. supplementary material(File)
File 17.4 KB