Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T23:25:23.927Z Has data issue: false hasContentIssue false

Anomalous characteristics of pore formation in Graphene induced by Si-nanoparticle bombardment

Published online by Cambridge University Press:  24 November 2017

Jae Hyun Park*
Affiliation:
Department of Aerospace and Software Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
Ramki Murugesan
Affiliation:
Graduate School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
Jaekwang Lee
Affiliation:
Department of Physics, Pusan National University, Busan 46241, South Korea
Narayana R. Aluru
Affiliation:
Beckman Institute for Advanced Science and Technology and Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Address all correspondence to Jae Hyun Park at parkj@gnu.ac.kr
Get access

Abstract

Graphene nanopores are utilized in various notable applications such as water desalination, molecular separation, and DNA sequencing. However, the creation of stable nanopores is still challenging due to the self-healing nature of graphene. In this study, using molecular dynamics simulations we explore the drilling of nanopores through graphene by bombardment with Si-nanoparticles. This enables the Si-passivation along the nanopore rim, which is known as an efficient way to stabilize graphene nanopores. The interplay between graphene and projectile causes the anomalous behaviors such as local maxima depending on particle size. The observations are thoroughly analyzed with interaction energy and shape changes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., and Golovchenko, J.A.: Graphene as a subnanometre trans-electrode membrane. Nature 467, 190 (2010).Google Scholar
2. Heerema, S.J. and Dekker, C.: Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127 (2016).CrossRefGoogle ScholarPubMed
3. Koh, D.Y. and Lively, R.P.: Water desalination membranes can be created by etching nanometre-sized pores in a single layer of graphene. Nat. Nanotechnol. 10, 385 (2015).Google Scholar
4. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S., Mahurin, S.M., and Karnik, R.: Water desalination using nanoporous single-layer. Nat. Nanotechnol. 10, 459 (2015).Google Scholar
5. Kim, H.W., Yoon, H.W., Yoon, S.M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y., and Park, H.B.: Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91 (2013).Google Scholar
6. Jain, T., Rasera, B.C., Guerrero, R.J.S., Boutilier, M.S.H., O'Hern, S.C., Idrobo, J.C., and Karnik, R.: Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10, 1053 (2015).Google Scholar
7. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J., and Golovchenko, J.A.: Ion-beam sculpting at nanometer length scales. Nature 412, 166 (2001).Google Scholar
8. Merchant, C.A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M.D., Venta, K., Luo, Z., Johnson, A.T.C., and Drndić, M.: DNA translocation through graphene nanopores. Nano Lett.. 10, 2915 (2010).Google Scholar
9. Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K., and Dekker, C.: DNA translocation through graphene nanopores. Nano Lett.. 10, 3163 (2010).Google Scholar
10. Zan, R., Ramasse, Q.M., Bangert, U., and Novoselov, K.S.: Graphene reknits its holes. Nano Lett.. 6, 10130 (2012).Google Scholar
11. Tsetserisa, L. and Pantelides, S.T.: Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes. Carbon 47, 901 (2009).Google Scholar
12. Lee, J., Yang, Z., Zhou, W., Pennycook, S.J., Pantelides, S.T., and Chisholm, M.F.: Stabilization of graphene nanopore. Proc. Natl. Acad. Sci. USA 111, 7522 (2014).Google Scholar
13. Di Fonzo, F., Gidwani, A., Fan, M.H., Neumann, D., Iordanoglou, D.I., Heberlein, J.V.R., McMurry, P.H., and Girshick, S.L., Tymiak, N., Gerberich, W.W., and Rao, N.P.: Focused nanoparticle-beam deposition of patterned microstructures. Appl. Phys. Lett. 77, 910 (2000).Google Scholar
14. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989).Google Scholar
15. Stuart, S.J., Tutein, A.B., and Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000).Google Scholar
16. Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
17. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1 (1995).Google Scholar
18. Humphrey, W., Dalke, A., and Schulten, K.: VMD – visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).Google Scholar
19. Lee, J.-H., Loya, P.E., Lou, J., and Thomas, E.L.: Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346, 1092 (2014).Google Scholar
20. Suri, M. and Dumitrică, T.: Efficient sticking of surface-passivated Si nanospheres via phase-transition plasticity. Phys. Rev. B 78, 081405(R) (2008).Google Scholar
21. Backman, M.E. and Goldsmith, W.: The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16, 1 (1978).Google Scholar
22. Ehbrecht, M., Ferkel, H., and Huisken, F.: Generation, analysis, and deposition of silicon nanocrystals up to 10 nm in diameter. Z. Phys. D 40, 88 (1997).Google Scholar
23. Rao, N.P., Tymiak, N., Blum, J., Neuman, A., Lee, H.J., Girshick, S.L., McMurry, P.H., and Heberlein, J.: Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide. J. Aerosol Sci. 29, 707 (1998).Google Scholar
24. Piekutowski, A.J. and Poormon, K.L.: Holes formed in thin aluminum sheets by spheres with impact velocities ranging from 2 to 10 km/s. Proced. Eng. 103, 482 (2015).Google Scholar
25. Geng, S., Verkhoturov, S.V., Eller, M.J., Della-Negra, S., and Schweikert, E.A.: The collision of a hypervelocity massive projectile with free-standing graphene: investigation of secondary ion emission and projectile fragmentation. J. Chem. Phys. 146, 054305 (2017).Google Scholar