Skip to main content Accessibility help
×
Home

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation

Published online by Cambridge University Press:  30 July 2018

Xiaohui Wu
Affiliation:
Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
Yang Si
Affiliation:
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
Jianyong Yu
Affiliation:
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
Bin Ding
Affiliation:
Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
Corresponding
E-mail address:
Get access

Abstract

Effective degradation of organic pollutants in wastewater is of great importance to the environment and human society. TiO2-based electrospun nanofibrous materials combining the properties of the large specific surface area, high aspect ratio, tunable compositions and structures, as well as easy to recycle, show great promise for the efficient removal of organic pollutants. In this Prospective paper, the recent progress in the degradation of organic water contaminants over visible-light-responsive TiO2-based nanofibrous materials is summarized, with emphasis on the strategies for improving the visible-light photocatalytic activity of TiO2-based nanofibrous materials. Finally, the current challenges and future outlook in this field are discussed.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Garcia, S. and Brillas, E.: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C, Photochem. 31, 1 (2017).CrossRefGoogle Scholar
2.Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., and Wehrli, B.: Global water pollution and human health. Annu. Rev. Env. Resour. 35, 109 (2010).CrossRefGoogle Scholar
3.Robinson, T., McMullan, G., Marchant, R., and Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247 (2001).CrossRefGoogle ScholarPubMed
4.Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., and Gawlik, B.M.: Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44, 4115 (2010).CrossRefGoogle ScholarPubMed
5.Khin, M.M., Nair, A.S., Bahu, V.J., Murugan, R., and Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075 (2012).CrossRefGoogle Scholar
6.Klavarioti, M., Mantzavinos, D., and Kassinos, D.: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402 (2009).CrossRefGoogle ScholarPubMed
7.Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter, T., and Kalagara, S.: Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94 (2016).CrossRefGoogle ScholarPubMed
8.Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O′Shea, K., Entezari, M.H., and Dionysiou, D.D.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331 (2012).CrossRefGoogle Scholar
9.Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y.: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128 (2015).CrossRefGoogle ScholarPubMed
10.Wang, X., Li, Z., Shi, J., and Yu, Y.: One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346 (2014).CrossRefGoogle ScholarPubMed
11.Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385 (2014).CrossRefGoogle ScholarPubMed
12.Wang, N., Si, Y., Wang, N., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Ding, B.: Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep. Purif. Technol. 126, 44 (2014).CrossRefGoogle Scholar
13.Ding, B., Gong, J., Kim, J., and Shiratori, S.: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibres. Nanotechnology 16, 785 (2005).CrossRefGoogle Scholar
14.Si, Y., Wang, X., Yan, C., Yang, L., Yu, J., and Ding, B.: Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512 (2016).CrossRefGoogle ScholarPubMed
15.Zhang, X., Li, X., Shao, C., Li, J., Zhang, M., Zhang, P., Wang, K., Lu, N., and Liu, Y.: One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J. Hazard. Mater. 260, 892 (2013).CrossRefGoogle Scholar
16.Ding, B., Li, C., Fujita, S., and Shiratori, S.: Layer-by-layer self-assembled tubular films containing polyoxometalate on electrospun nanofibers. Colloids Surf. A 284, 257 (2006).CrossRefGoogle Scholar
17.Boyer, S.M., Liu, J., Zhang, S., Ehrlich, M.I., McCarthy, D.L., Tong, L., DeCoste, J.B., Bernier, W.E., and Jones, W.E. Jr.: The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. J. Photochem. Photobiol. A Chem. 329, 46 (2016).CrossRefGoogle Scholar
18.Liu, Z., Miao, Y., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T.: Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 424, 49 (2014).CrossRefGoogle ScholarPubMed
19.Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).CrossRefGoogle ScholarPubMed
20.Gopal, M., Chan, W.J.M., and DeJonghe, L.C.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001 (1997).CrossRefGoogle Scholar
21.Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A., and Seakins, J.M.: The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57 (1995).CrossRefGoogle Scholar
22.Feist, T.P. and Davies, P.K.: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).CrossRefGoogle Scholar
23.Wang, W., Tadé, M., and Shao, Z.: Nitrogen-doped simple and complex oxides for photocatalysis: a review. Prog. Mater. Sci. 92, 33 (2018).CrossRefGoogle Scholar
24.Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V.B., Kajitvichyanukul, P., and Krishnan-Ayer, R.: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C, Photochem. Rev. 9, 171 (2008).CrossRefGoogle Scholar
25.Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007).CrossRefGoogle Scholar
26.Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).CrossRefGoogle ScholarPubMed
27.Alves, A.K., Berutti, F.A., and Bergmann, C.P.: Visible and UV photocatalytic characterization of Sn-TiO2 electrospun fiber. Catal. Today 208, 7 (2013).CrossRefGoogle Scholar
28.Ma, D., Xin, Y., Gao, M., and Wu, J.: Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B Environ. 147, 49 (2014).CrossRefGoogle Scholar
29.Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Cao, T., and Liu, Y.: Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces 3, 369 (2011).CrossRefGoogle Scholar
30.Baiyila, D., Wang, X., Li, X., Sharileaodu, B., Li, X., Xu, L., Liu, Z., Duan, L., and Liu, J.: Electrospun TiO2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J. Mater. Chem. A 2, 12304 (2014).CrossRefGoogle Scholar
31.Shang, M., Wang, W., Zhang, L., Sun, S., Wang, L., and Zhou, L.: 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances. J. Phys. Chem. C 113, 14727 (2009).CrossRefGoogle Scholar
32.Zhang, L., Li, Y., Zhang, Q., and Wang, H.: Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986 (2013).CrossRefGoogle Scholar
33.Misra, M., Singh, N., and Gupta, R.K.: Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570 (2017).CrossRefGoogle Scholar
34.Chen, X. and Mao, S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
35.Shahini, P., Ashkarran, A.A., Hamidinezhad, H., and Bahari, A.: The role of iron functionalization on the visible-light photocatalytic performance of TiO2 nanofibers suitable for environmental applications. Res. Chem. Intermed. 42, 8273 (2016).CrossRefGoogle Scholar
36.Zhang, Z., Shao, C., Zhang, L., Li, X., and Liu, Y.: Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351, 57 (2010).CrossRefGoogle ScholarPubMed
37.Ruggieri, F., Camillo, D.D., Maccarone, L., Santucci, S., and Lozzi, L.: Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 15, 1982 (2013).CrossRefGoogle Scholar
38.Worayingyong, A., Sang-urai, S., Smith, M.F., Maensiri, S., and Seraphin, S.: Effects of cerium dopant concentration on structural properties and photocatalytic activity of electrospun Ce-doped TiO2 nanofibers. Appl. Phys. A 117, 1191 (2014).CrossRefGoogle Scholar
39.Choi, J., Sudhagar, P., Lakshmipathiraj, P., Lee, J.W., Devadoss, A., Lee, S., Song, T., Hong, S., Eito, S., Terashima, C., Han, T.H., Kang, J.K., Fujishima, A., Kang, Y.S., and Paik, U.: Three-dimensional Gd-doped TiO2 fibrous photoelectrodes for efficient visible light-driven photocatalytic performance. RSC Adv. 4, 11750 (2014).CrossRefGoogle Scholar
40.Lee, D.Y., Kim, B.Y., Cho, N.I., and Oh, Y.J.: Electrospun Er3+-TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys. 11, S324 (2011).CrossRefGoogle Scholar
41.Xu, J., Wang, W., Shang, M., Gao, E., Zhang, Z., and Ren, J.: Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 196, 426 (2011).CrossRefGoogle ScholarPubMed
42.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
43.Camillo, D.D., Ruggieri, F., Santucci, S., and Lozzi, L.: N-doped TiO2 nanofibers deposited by electrospinning. J. Phys. Chem. C 116, 18427 (2012).CrossRefGoogle Scholar
44.Dai, Y.R. and Yin, L.F.: Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 4, 456 (2014).CrossRefGoogle Scholar
45.Li, H., Zhang, W., Huang, S., and Pan, W.: Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO2 nanofibers. Nanoscale 4, 801 (2012).CrossRefGoogle ScholarPubMed
46.Yu, Q., Jin, X., Li, S., Wang, L., and Liang, K.: The photocatalytic properties of Fe3+ and N co-doped TiO2 micro/nanofiber film for dye waste water decomposition. Adv. Mater. Res. 356–360, 853 (2012).Google Scholar
47.Zhang, Q., Zhou, S., Fu, S.F., and Wang, X.Z.: Tetranitrophthalocyanine zinc/TiO2 nanofibers organic-inorganic heterostructures with enhanced visible photocatalytic activity. Nano 12, 1750117 (2017).CrossRefGoogle Scholar
48.Su, C., Shao, C., and Liu, Y.: Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J. Colloid Interface Sci. 359, 220 (2011).CrossRefGoogle ScholarPubMed
49.Li, H., Zhu, Y., Cao, H., Yang, X., and Li, C.: Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fiber. Mater. Res. Bull. 48, 232 (2013).CrossRefGoogle Scholar
50.Likodimos, V.: Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 230, 269 (2018).CrossRefGoogle Scholar
51.Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I.N., Wu, L.Z., Tung, C.H., and Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454 (2016).CrossRefGoogle ScholarPubMed
52.Hu, S., Wei, Z., Chang, Q., Trinchi, A., and Yang, J.: A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 378, 402 (2016).CrossRefGoogle Scholar
53.Wan, H., Wang, N., Yang, J., Si, Y., Chen, K., Ding, B., Sun, G., El-Newehy, M., Al-Deyab, S.S., and Yu, J.: Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J. Colloid Interface Sci. 417, 18 (2014).CrossRefGoogle ScholarPubMed
54.Mu, J., Chen, B., Zhang, M., Guo, Z., Zhang, P., Zhang, Z., Sun, Y., Shao, C., and Liu, Y.: Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 4, 424 (2012).CrossRefGoogle ScholarPubMed
55.Li, X., Lin, H., Chen, X., Niu, H., Liu, J., Zhang, T., and Qu, F.: Dendritic α-Fe2O3/TiO2 nanocomposites with improved visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 9176 (2016).CrossRefGoogle ScholarPubMed
56.Tian, F., Hou, D., Hu, F., Xie, K., Qiao, X., and Li, D.: Porous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 391, 295 (2017).CrossRefGoogle Scholar
57.Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., and Li, Q.: In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8, 1199 (2015).CrossRefGoogle Scholar
58.Su, C., Liu, L., Zhang, M., Zhang, Y., and Shao, C.: Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14, 3989 (2012).CrossRefGoogle Scholar
59.Yang, Z., Lu, J., Ye, W., Yu, C., and Chang, Y.: Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 392, 472 (2017).CrossRefGoogle Scholar
60.Shahini, P. and Ashkarran, A.A.: Immobilization of plasmonic Ag-Au NPs on the TiO2 nanofibers as an efficient visible-light photocatalyst. Colloids Surf. A 537, 155 (2018).CrossRefGoogle Scholar
61.Wang, Y., Liu, L., Huang, Y., Li, X., Cao, X., Xu, L., Meng, C., Wang, Z., and Zhu, W.: Ag0.35V2O5/TiO2 branched nanoheterostructures: facile fabrication and efficient visible light photocatalytic activity. Mater. Lett. 128, 358 (2014).CrossRefGoogle Scholar
62.Li, B., Hao, Y., Zhang, B., Shao, X., and Hu, L.: A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofiber. Appl. Catal. A Gen. 531, 1 (2017).CrossRefGoogle Scholar
63.Li, X., Chen, X., Niu, H., Han, X., Zhang, T., Liu, J., Lin, H., and Qu, F.: The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity. J. Colloid Interface Sci. 452, 89 (2015).CrossRefGoogle ScholarPubMed
64.Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., Sun, Z., Wang, H., and Guo, Z.: Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B Environ. 201, 470 (2017).CrossRefGoogle Scholar
65.Liao, C., Ma, Z., Dong, G., and Qiu, J.: BiOI nanosheets decorated TiO2 nanofiber: tailoring water purification performance of photocatalyst in structural and photo-responsivity aspects. Appl. Surf. Sci. 314, 481 (2014).CrossRefGoogle Scholar
66.Wang, Y., Su, Y.R., Qiao, L., Liu, L.X., Su, Q., Zhu, C.Q., and Liu, X.Q.: Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology 22, 225702 (2011).CrossRefGoogle ScholarPubMed
67.Lv, Y., Xu, Z., Irie, S., and Nakane, K.: Fabrication of PdOx loaded highly mesoporous WO3/TiO2 hybrid nanofibers by stepwise pore-generation for enhanced photocatalytic performance. Mol. Catal. 438, 173 (2017).CrossRefGoogle Scholar
68.Wang, Y., Zhang, J., Liu, L., Zhu, C., Liu, X., and Su, Q.: Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning. Mater. Lett. 75, 95 (2012).CrossRefGoogle Scholar
69.Yang, G., Zhang, Q., Chang, W., and Yan, W.: Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J. Alloy. Compd. 580, 29 (2013).CrossRefGoogle Scholar
70.Chang, W., Ren, X., Yang, G., Yan, W., and Sun, R.: Synthesis and photocatalytic activity of ZnxCd1−xS/TiO2 heterostructures nanofibre prepared by combining electrospinning and hydrothermal method. S. Afr. J. Chem. 68, 138 (2015).CrossRefGoogle Scholar
71.Zhang, Z., Shao, C., Li, X., Sun, Y., Zhang, M., Mu, J., Zhang, P., Guo, Z., and Liu, Y.: Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5, 606 (2013).CrossRefGoogle ScholarPubMed
72.Kongkanand, A., Domínguez, R.M., and Kamat, P.V.: Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 7, 676 (2007).CrossRefGoogle ScholarPubMed
73.Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., and Xu, J.: Adsorption behavior and mechanism of chloramphenicols sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 310, 235 (2016).CrossRefGoogle ScholarPubMed
74.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., and Liu, Y.: TiO2@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties. Nanoscale 3, 2943 (2011).CrossRefGoogle Scholar
75.Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z., Sun, Y., and Liu, Y.: Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. J. Mater. Chem. 21, 17746 (2011).CrossRefGoogle Scholar
76.Zhao, Z., Li, Z., and Zou, Z.: Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 13, 4746 (2011).CrossRefGoogle ScholarPubMed
77.Noguchi, Y., Goto, T., Miyayama, M., Hoshikawa, A., and Kamiyama, T.: Ferroelectric distortion and electronic structure in Bi4Ti3O12. J. Electroceram. 21, 49 (2008).CrossRefGoogle Scholar
78.Luo, S., Chen, J., Huang, Z., Liu, C., and Fang, M.: Controllable synthesis of titania-supported bismuth oxyiodide heterostructured nanofibers with highly exposed (110) bismuth oxyiodide facets for enhanced photocatalytic activity. ChemCatChem 8, 3780 (2016).CrossRefGoogle Scholar
79.Wang, Y., Sunarso, J., Zhao, B., Ge, C., and Chen, G.: One-dimensional BiOBr nanosheets/TiO2 nanofibers composite: controllable synthesis and enhanced visible photocatalytic activity. Ceram. Int. 43, 15769 (2017).CrossRefGoogle Scholar
80.Li, Y.-J., Cao, T.-P., Shao, C.-L., and Wang, C.-H.: Preparation and photocatalytic properties of γ-Bi2O3/TiO2 composite fibers. J. Inorg. Mater. 27, 687 (2012).CrossRefGoogle Scholar
81.Cao, T., Li, Y., Wang, C., Zhang, Z., Zhang, M., Shao, C., and Liu, Y.: Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. J. Mater. Chem. 21, 6922 (2011).CrossRefGoogle Scholar
82.Zhou, D., Zhang, H., Tu, Y., Tian, Y., Cai, Y., Hu, Z., and Zhu, X.: In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res. Lett. 11, 193 (2016).CrossRefGoogle ScholarPubMed
83.Guo, Z., Li, P., Che, H., Wang, G., Wu, C., Zhang, X., and Mu, J.: One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic activity. Ceram. Int. 42, 4517 (2016).CrossRefGoogle Scholar
84.Zhang, M., Shao, C., Mu, J., Zhang, Z., Guo, Z., Zhang, P., and Liu, Y.: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605 (2012).CrossRefGoogle Scholar
85.Yang, Y., Liu, Y., Wei, J., Pan, C., Xiong, R., and Shi, J.: Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv. 4, 31941 (2014).CrossRefGoogle Scholar
86.Zhang, R., Wang, X., Song, J., Si, Y., Zhuang, X., Yu, J., and Ding, B.: In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 3, 22136 (2015).CrossRefGoogle Scholar
87.Kokubo, H., Ding, B., Naka, T., Tsuchihira, H., and Shiratori, S.: Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells. Nanotechnology 18, 165604 (2007).CrossRefGoogle Scholar
88.Kanehata, M., Ding, B., and Shiratori, S.: Nanoporous ultra-high specific surface inorganic fibres. Nanotechnology 18, 315602 (2007).CrossRefGoogle Scholar
89.Zhang, Y., Liu, S., Xiu, Z., Lu, Q., Sun, H., and Liu, G.: TiO2/BiOI heterostructured nanofibers: electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation. J. Nanopart. Res. 16, 2375 (2014).CrossRefGoogle Scholar
90.Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., and Xiong, J.: Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355, 921 (2015).CrossRefGoogle Scholar
91.Su, Z., Li, H., Chen, P., Hu, S., and Yan, Y.: Novel heterostructured InN/TiO2 submicron fibers designed for high performance visible-light-driven photocatalysis. Catal. Sci. Technol. 7, 5105 (2017).CrossRefGoogle Scholar
92.Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., and Wang, H.: Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B, Environ. 217, 388 (2017).CrossRefGoogle Scholar
93.Adhikari, S.P., Awasthi, G.P., Kim, H.J., Park, C.H., and Kim, C.S.: Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32, 6163 (2016).CrossRefGoogle ScholarPubMed
94.Wang, C., Hu, L., Chai, B., Yan, J., and Li, J.: Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl. Surf. Sci. 430, 243 (2018).CrossRefGoogle Scholar
95.Zhou, X., Shao, C., Li, X., Wang, X., Guo, X., and Liu, Y.: Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. J. Hazard. Mater. 344, 113 (2018).CrossRefGoogle ScholarPubMed
96.Song, J., Wang, X., Yan, J., Yu, J., Sun, G., and Ding, B.: Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 7, 1636 (2017).CrossRefGoogle ScholarPubMed
97.Shan, H., Wang, X., Shi, F., Yan, J., Yu, J., and Ding, B.: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl. Mater. Interfaces 9, 18966 (2017).CrossRefGoogle ScholarPubMed
98.Si, Y., Mao, X., Zheng, H., Yu, J., and Ding, B.: Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Adv. 5, 6027 (2015).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 51
Total number of PDF views: 292 *
View data table for this chart

* Views captured on Cambridge Core between 30th July 2018 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2rmft Total loading time: 0.402 Render date: 2021-01-24T08:37:34.345Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Titania-based electrospun nanofibrous materials: a new model for organic pollutants degradation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *