Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 1.376 Render date: 2021-03-08T04:39:22.346Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Prediction of new iodine-containing apatites using machine learning and density functional theory

Published online by Cambridge University Press:  27 August 2019

Timothy Q. Hartnett
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
Mukil V. Ayyasamy
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
Prasanna V. Balachandran
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
E-mail address:
Get access


The authors develop a computational approach that integrates machine learning (ML) and density functional theory (DFT) with experimental data to predict formable and thermodynamically stable iodine-containing apatites. This is an important problem because radioactive iodine is toxic and capturing it in solid waste forms have implications in remediation treatments. The authors train ML models using 336 compositions and screen 54 iodine-containing compounds in apatite stoichiometry. ML models predict 18 as formable and 24 as nonformable in the apatite structure; 12 compounds were identified to be uncertain. DFT convex hull predicted two to be thermodynamically stable, one as metastable, and nine as unstable.

Artificial Intelligence Research Letters
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below.



These two authors contributed equally to this work.


1.Weber, W.J., Ewing, R.C., Catlow, C.R.A., de la Rubia, T.D., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E. R. and Zinkle, S. J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 14341484 (1998).CrossRefGoogle Scholar
2.Donald, I.W., Metcalfe, B.L., and Taylor, R.N.J.: The immobilization of high level radioactive wastes using ceramics and glasses.. J. Mater. Sci. 32, 58515887 (1997).CrossRefGoogle Scholar
3.Watanabe, Y., Ikoma, T., Yamada, H., Suetsugu, Y., Komatsu, Y., Stevens, G.W., Moriyoshi, Y., and Tanaka, J.: Novel long-term immobilization method for radioactive iodine-129 using a Zeolite/Apatite composite sintered body. ACS Appl. Mater. Interfaces 1, 15791584 (2009).CrossRefGoogle ScholarPubMed
4.Masuda, K., Kato, O., Tanaka, Y., Nakajima, S., Okamoto, S., Sakuragi, T., and Yoshida, S.: Iodine immobilization: Development of solidification process for spent silver-sorbent using hot isostatic press technique. Prog. Nucl. Energy 92, 267272 (2016).CrossRefGoogle Scholar
5.Riley, B.J., Vienna, J.D., Strachan, D.M., McCloy, J.S., and Jerden, J.L. Jr: Materials and processes for the effective capture and immobilization of radioiodine: a review. J. Nucl. Mater. 470, 307326 (2016).CrossRefGoogle Scholar
6.White, T.J. and ZhiLi, D.: Structural derivation and crystal chemistry of apatites. Acta Crystallogr. B 59, 116 (2003).CrossRefGoogle ScholarPubMed
7.White, T., Ferraris, C., Kim, J., and Madhavi, S.: Apatite-An adaptive framework structure. Rev. Mineral. Geochem. 57, 307401 (2005).CrossRefGoogle Scholar
8.Kim, J.Y., Dong, Z., and White, T.J.: Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites. J. Am. Ceram. Soc. 88, 12531260 (2005).CrossRefGoogle Scholar
9.Wopenka, B. and Pasteris, J.D.: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131143 (2005).CrossRefGoogle Scholar
10.Ardanova, L.I., Get'man, E.I., Loboda, S.L., Prisedsky, V.V., Tkachenko, T.V., Marchenko, V.I., Antonovich, V.P., Chivireva, N.A., Chebishev, K.A., and Lyashenko, A.S.: Isomorphous substitutions of rare earth elements for calcium in synthetic hydroxyapatite. Inorg. Chem. 49, 1068710693 (2010).CrossRefGoogle Scholar
11.Stennett, M., Pinnock, I., and Hyatt, N.: Rapid synthesis of Pb5(VO4)3I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating. J. Nucl. Mater. 414, 352359 (2011).CrossRefGoogle Scholar
12.Yao, T., Lu, F., Sun, H., Wang, J., Ewing, R.C., and Lian, J.: Bulk iodoapatite ceramic densified by spark plasma sintering with exceptional thermal stability. J. Am. Ceram. Soc. 97, 24092412 (2014).CrossRefGoogle Scholar
13.Legrain, F., Carrete, J., van Roekeghem, A., Madsen, G.K., and Mingo, N.: Materials screening for the discovery of new half-heuslers: Machine learning versus ab Initio methods. J. Phys. Chem. B 122, 625632 (2018).CrossRefGoogle ScholarPubMed
14.Balachandran, P.V., Broderick, S.R., and Rajan, K.: Identifying the “inorganic gene” for high temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 467, 22712290 (2011).CrossRefGoogle ScholarPubMed
15.Balachandran, P.V., Emery, A.A., Gubernatis, J.E., Lookman, T., Wolverton, C., and Zunger, A.: Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2, 043802 (2018).Google Scholar
16.Pilania, G., Balachandran, P.V., Kim, C., and Lookman, T.: Finding new perovskite halides via machine learning. Front. Mater. 3, 19 (2016).CrossRefGoogle Scholar
17.Li, Z., Xu, Q., Sun, Q., Hou, Z., and Yin, W.-J.: Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning. Adv. Funct. Mater. 29, 1807280 (2019).Google Scholar
18.Li, W., Jacobs, R., and Morgan, D.: Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comput. Mater. Sci. 150, 454463 (2018).CrossRefGoogle Scholar
19.Bartel, C.J., Sutton, C., Goldsmith, B.R., Ouyang, R., Musgrave, C.B., Ghiringhelli, L.M., and Scheffler, M.: New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019). doi:10.1126/sciadv.aav0693.CrossRefGoogle ScholarPubMed
20.Islam, N., Huang, W., and Zhuang, H.L.: Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 150, 230235 (2018).CrossRefGoogle Scholar
21.Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., and Mehta, A.: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018), doi:10.1126/sciadv.aaq1566.CrossRefGoogle ScholarPubMed
22.Wang, J.: Incorporation of iodine into apatite structure: A crystal chemistry approach using artificial neural network. Front. Earth Sci. 3, 20 (2015).CrossRefGoogle Scholar
23.Optiz, D. and Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169198 (1999).CrossRefGoogle Scholar
24.Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C.: Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM 65, 15011509 (2013).CrossRefGoogle Scholar
25.Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., and Wolverton, C.: The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).CrossRefGoogle Scholar
26.Ito, J.: Silicate apatites and oxyapatites. Am. Miner. 53, 890907 (1968).Google Scholar
27.Cockbain, A.G.: The crystal chemistry of apatites. Mineral. Mag. 37, 654660 (1968).Google Scholar
28.Grisafe, D.A. and Hummel, F.A.: Crystal chemistry and color in apatites containing cobalt, nickel and rare-earth ions. Am. Mineral. 55, 11311145 (1970).Google Scholar
29.Grisafe, D.A. and Hummel, F.A.: Pentavalent ion substitutions in the apatite structure: Part a. crystal chemistry. J. Solid State Chem. 2, 160166 (1970).CrossRefGoogle Scholar
30.Kriedler, E.R. and Hummel, F.A.: The crystal chemistry of apatite: Structure fields of fluor- and chlorapatite. Am. Mineral. 55, 170184 (1970).Google Scholar
31.Dordević, T., Šutovic, S., Stojanovic, J., and Karanović, L.: Sr, Ba and Cd arsenates with the apatite-type structure. Acta Crystallogr. C 64, i82i86 (2008).CrossRefGoogle ScholarPubMed
32.Dong, Z., White, T.J., Wei, B., and Laursen, K.: Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate. J. Am. Ceram. Soc. 85, 25152522 (2002).CrossRefGoogle Scholar
33.Silva, C.C., Vasconcelos, I.F., Sombra, A.S.B., and Valente, M.A.: Magnetic properties study on fe-doped calcium phosphate. Phys. Scr. 80, 055706 (2009).CrossRefGoogle Scholar
34.Baikie, T., Mercier, P.H.J., Elcombe, M.E., Kim, J.Y., Page, Y.L., Mitchell, L.D., White, T.J., and Whitfield, P.S.: Tricilinic apatites. Acta Crystallogr. B 63, 251256 (2007).CrossRefGoogle ScholarPubMed
35.Suzuki, T., Hatsushika, T., and Miyake, M.: Synthetic hydroxyapatites as inorganic cation exchangers: Part 2. J. Chem. Soc.: Faraday Trans. I 78, 36053611(1982).Google Scholar
36.Flora, N.J., Yoder, C.H., and Jenkins, H.D.B.: Lattice energies of apatites and the estimation of ΔHf° (PO3−4, g). Inorg. Chem. 43, 23402345 (2004).CrossRefGoogle Scholar
37.Sugiyama, S.: Approach using apatite to studies of energy and environment. Phosphorus Res. Bull. 21, 18 (2007).CrossRefGoogle Scholar
38.Matsunaga, K., Inamori, H., and Murata, H.: Theoretical trend of ion exchange ability with divalent cations in hydroxyapatite. Phys. Rev. B 78, 094101 (2008).CrossRefGoogle Scholar
39.Balachandran, P.V. and Rajan, K.: Structure maps for AI4AII6 (BO4)6X2 apatite compounds via data mining. Acta Crystallogr. B 68, 2433 (2012).CrossRefGoogle ScholarPubMed
40.Muller, O. and Roy, R.: The Major Ternary Structural Families (Springer-Verlag, New York, 1974).CrossRefGoogle Scholar
41.Ahrens, L.H.: Anion affinity and polarizing power of cations. Nature 169, 463 (1952).CrossRefGoogle Scholar
42.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751767 (1976).CrossRefGoogle Scholar
43.Pauling, L.: The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960).Google Scholar
44.Anslyn, E.V. and Dougherty, D.A.: Introduction to Structure and Models of Bonding. In Modern Physical Organic Chemistry, edited by Murdzek, J. (University Science Books, Sausalito, California, 2006).Google Scholar
45.Breiman, L.: Random forests. Mach. Learn. 45, 532 (2001).CrossRefGoogle Scholar
46.Liaw, A. and Wiener, M.: Classification and regression by randomForest. R News 2, 18 (2002).Google Scholar
47.Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 11891232 (2001).CrossRefGoogle Scholar
48.Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367378 (2002).CrossRefGoogle Scholar
49.Greenwell, B., Boehmke, B., Cunningham, J., and Developers, G.: gbm: Generalized Boosted Regression Models, r package version 2.1.5 (2019).Google Scholar
50.Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle ScholarPubMed
51.Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle ScholarPubMed
52.Corso, A.D.: Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337350 (2014).CrossRefGoogle Scholar
53.Balachandran, P.V., Rajan, K., and Rondinelli, J.M.: Electronically driven structural transitions in A10(BO4)6F2 apatites (A = Ca, Sr, Pb, Cd and Hg). Acta Crystallogr. B 70, 612615 (2014).CrossRefGoogle Scholar
54.Fay, M.P. and Proschan, M.A.: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1 (2010).CrossRefGoogle ScholarPubMed
55.Cao, C., Chong, S., Thirion, L., Mauro, J.C., McCloy, J.S., and Goel, A.: Wet chemical synthesis of apatite-based waste forms-A novel room temperature method for the immobilization of radioactive iodine. J. Mater. Chem. A 5, 1433114342 (2017).CrossRefGoogle Scholar
56.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013), doi:10.1063/1.4812323.CrossRefGoogle Scholar
57.Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., and Timberlake, D.: Sources and remediation for mercury contamination in aquatic systems - a literature review. Enviorn. Pollut. 131, 323336 (2004).CrossRefGoogle ScholarPubMed
58.Toro-González, M., Clifford, D.M., Copping, R., Mirzadeh, S., and Rojas, J.V.: Synthesis and characterization of intrinsically radiolabeled lanthanide phosphate nanoparticles toward biomedical and environmental applications. J. Nanopart. Res. 20, 238 (2018).CrossRefGoogle Scholar

Hartnett et al. supplementary material

Hartnett et al. supplementary material 1

File 374 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 179
Total number of PDF views: 412 *
View data table for this chart

* Views captured on Cambridge Core between 27th August 2019 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Prediction of new iodine-containing apatites using machine learning and density functional theory
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Prediction of new iodine-containing apatites using machine learning and density functional theory
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Prediction of new iodine-containing apatites using machine learning and density functional theory
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *