Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-14T17:08:29.817Z Has data issue: false hasContentIssue false

Assembly and alignment of conjugated polymers: materials design, processing, and applications

Published online by Cambridge University Press:  12 May 2015

Kyeongwoon Chung
Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Youngchang Yu
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Min Sang Kwon
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
John Swets
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Jinsang Kim*
Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109; Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Ji Ho Youk
Department of Applied Organic Materials Engineering, Inha University, Incheon 402-751, South Korea; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Address all correspondence to Jinsang Kim
Get access


Conjugated polymers (CPs) are widely investigated because of their intriguing optical and semiconducting properties in various optoelectronic device applications. Because of the one-dimensional p-orbital overlap along the main chain, CPs exhibit strong anisotropy in optoelectronic characteristics. Therefore, macroscopic assembly and alignment of CPs are essential to fully utilize their potential properties in real device applications. Here we review various processing strategies and material design principles for efficient CP alignment that result in highly anisotropic optical and electronic characteristics. Furthermore, we thoroughly review the incorporation of aligned CPs layers in organic light-emitting diodes, organic thin film transistors, and organic photovoltaic devices. The achieved macroscopic CP alignment has increased the optoelectronic properties and greatly improved device performance.

Polymers/Soft Matter Prospective Articles
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Gross, M., Muller, D., Nothofer, H., Scherf, U., Neher, D., Brauchle, C., and Meerholz, K.: Improving the performance of doped pi-conjugated polymmers for use in organic light-emitting diodes. Nature 405, 661 (2000).Google Scholar
2.Lee, B.R., Jung, E.D., Park, J.S., Nam, Y.S., Min, S.H., Kim, B.-S., Lee, K.-M., Jeong, J.-R., Friend, R.H., Kim, J.-S., Kim, S.O., and Song, M.H.: Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 5, 4840 (2014).Google Scholar
3.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., Macdonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).Google Scholar
4.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).Google Scholar
5.Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.-S., and Ree, M.: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 5, 197 (2006).CrossRefGoogle Scholar
6.Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., and Li, G.: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649 (2009).CrossRefGoogle Scholar
7.Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297 (2009).Google Scholar
8.Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).Google Scholar
9.Kim, B.-G., Jeong, E.J., Chung, J.W., Seo, S., Koo, B., and Kim, J.: A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nat. Mater. 12, 659 (2013).Google Scholar
10.Cimrová, V., Remmers, M., Neher, D., and Wegner, G.: Polarized light emission from LEDs prepared by the Langmuir–Blodgett technique. Adv. Mater. 8, 146 (1996).CrossRefGoogle Scholar
11.Kim, J., McHugh, S.K., and Swager, T.M.: Nanoscale fibrils and grids: aggregated structures from rigid-rod conjugated polymers. Macromolecules 32, 1500 (1999).Google Scholar
12.Kanetake, T., Ishikawa, K., Koda, T., Tokura, Y., and Takeda, K.: Highly oriented polydiacetylene films by vacuum deposition. Appl. Phys. Lett. 51, 1957 (1987).Google Scholar
13.Heil, H., Finnberg, T., von Malm, N., Schmechel, R., and Seggern, H.: The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene. J. Appl. Phys. 93, 1636 (2003).Google Scholar
14.Yang, C.Y., Soci, C., Moses, D., and Heeger, A.J.: Aligned rrP3HT film: structural order and transport properties. Synth. Met. 155, 639 (2005).Google Scholar
15.Biniek, L., Pouget, S., Djurado, D., Gonthier, E., Tremel, K., Kayunkid, N., Zaborova, E., Crespo-Monteiro, N., Boyron, O., Leclerc, N., Ludwigs, S., and Brinkmann, M.: High-temperature rubbing: a versatile method to align π-conjugated polymers without alignment substrate. Macromolecules 47, 3871 (2014).CrossRefGoogle Scholar
16.Zheng, Z., Yim, K.-H., Saifullah, M.S.M., Welland, M.E., Friend, R.H., Kim, J.-S., and Huck, W.T.S.: Uniaxial alignment of liquid-crystalline conjugated polymers by nanoconfinement. Nano Lett. 7, 987 (2007).Google Scholar
17.Aryal, M., Trivedi, K., and Hu, W.W.: Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography. ACS Nano 3, 3085 (2009).CrossRefGoogle ScholarPubMed
18.Ding, G., Wu, Y., Weng, Y., Zhang, W., and Hu, Z.: Solvent-assistant room temperature nanoimprinting-induced molecular orientation in Poly(3-hexylthiophene) nanopillars. Macromolecules 46, 8638 (2013).Google Scholar
19.Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., and Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406 (2000).Google Scholar
20.Tseng, H.-R., Ying, L., Hsu, B.B.Y., Perez, L.A., Takacs, C.J., Bazan, G.C., and Heeger, A.J.: High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett. 12, 6353 (2012).Google Scholar
21.Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T.-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993 (2014).CrossRefGoogle ScholarPubMed
22.Luo, C., Kyaw, A.K.K., Perez, L.A., Patel, S., Wang, M., Grimm, B., Bazan, G.C., Kramer, E.J., and Heeger, A.J.: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764 (2014).CrossRefGoogle ScholarPubMed
23.Wu, J., Gross, A.F., and Tolbert, S.H.: Host–guest chemistry using an oriented mesoporous host: alignment and isolation of a semiconducting polymer in the nanopores of an ordered silica matrix. J. Phys. Chem. B 103, 2374 (1999).CrossRefGoogle Scholar
24.Molenkamp, W.C., Watanabe, M., Miyata, H., and Tolbert, S.H.: Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica. J. Am. Chem. Soc. 126, 4476 (2004).Google Scholar
25.Martini, I.B., Craig, I.M., Molenkamp, W.C., Miyata, H., Tolbert, S.H., and Schwartz, B.J.: Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment. Nat. Nanotechnol. 2, 647 (2007).Google Scholar
26.Iacopino, D., Lovera, P., O'Riordan, A., and Redmond, G.: Highly polarized luminescence from β-phase-rich poly(9,9-dioctylfluorene) nanofibers. J. Phys. Chem. A 118, 5437 (2014).Google Scholar
27.Hagler, T.W., Pakbaz, K., Voss, K.F., and Heeger, A.J.: Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Phys. Rev. B 44, 8652 (1991).CrossRefGoogle ScholarPubMed
28.Weder, C., Sarwa, C., Bastiaansen, C., and Smith, P.: Highly polarized luminescence from oriented conjugated polymer/polyethylene blend films. Adv. Mater. 9, 1035 (1997).CrossRefGoogle Scholar
29.Zhu, Z. and Swager, T.M.: Conjugated polymer liquid crystal solutions: control of conformation and alignment. J. Am. Chem. Soc. 124, 9670 (2002).Google Scholar
30.Kuo, C.-C., Wang, C.-T., and Chen, W.-C.: Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromol. Mater. Eng. 293, 999 (2008).Google Scholar
31.Campoy-Quiles, M., Ishii, Y., Sakai, H., and Murata, H.: Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers. Appl. Phys. Lett. 92, 213305 (2008).CrossRefGoogle Scholar
32.Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., and Zhu, Z.: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21, 444 (2011).Google Scholar
33.Wittmann, J.C. and Lotz, B.: Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909 (1990).CrossRefGoogle Scholar
34.De Rosa, C., Park, C., Thomas, E., and Lotz, B.: Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433 (2000).Google Scholar
35.Brinkmann, M. and Wittmann, J.-C.: Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer. Adv. Mater. 18, 860 (2006).Google Scholar
36.Müller, C., Aghamohammadi, M., Himmelberger, S., Sonar, P., Garriga, M., Salleo, A., and Campoy-Quiles, M.: One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spin-coating. Adv. Funct. Mater. 23, 2368 (2013).CrossRefGoogle Scholar
37.Dörling, B., Vohra, V., Dao, T.T., Garriga, M., Murata, H., and Campoy-Quiles, M.: Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating. J. Mater. Chem. C 2, 3303 (2014).Google Scholar
38.Burrhoughes, J.H., Bradely, D.D.C., Brown, A.R., Markay, R.N., Friend, R.H., Burns, P.L., and Holmes, A.B.: Light emitting diodes based on conjugated polymers. Nature 347, 539 (1990).Google Scholar
39.Grell, M. and Bradley, D.D.C.: Polarized luminescence from oriented molecular materials. Adv. Mater. 11, 895 (1999).Google Scholar
40.Dyreklev, P., Berggren, M., Inganäs, O., Andersson, M.R., Wennerström, O., and Hjertberg, T.: Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode. Adv. Mater. 7, 43 (1995).Google Scholar
41.Hamaguchi, M. and Yoshino, K.: Polarized electroluminescence from rubbingaligned poly(2,5dinonyloxy1,4 phenylenevinylene) films. Appl. Phys. Lett. 67, 3381 (1995).Google Scholar
42.Grell, M., Bradley, D.D.C., Inbasekaran, M., and Woo, E.P.: Glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 9, 798 (1997).Google Scholar
43.Grell, M., Knoll, W., Lupo, D., Meisel, A., Miteva, T., Neher, D., Nothofer, H.-G., Scherf, U., and Yasuda, A.: Blue polarized electroluminescence from a liquid crystalline polyfluorene. Adv. Mater. 11, 671 (1999).Google Scholar
44.Blom, P.W.M., de Jong, M.J.M., and Vleggaar, J.J.M.: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308 (1996).Google Scholar
45.Jandke, M., Strohriegl, P., Gmeiner, J., Brütting, W., and Schwoerer, M.: Polarized electroluminescence from rubbing-aligned poly(p-phenylenevinylene). Adv. Mater. 11, 1518 (1999).Google Scholar
46.Whitehead, K.S., Grell, M., Bradley, D.D.C., Inbasekaran, M., and Woo, E.P.: Polarized emission from liquid crystal polymers. Synth. Met. 111–112, 181 (2000).Google Scholar
47.Whitehead, K.S., Grell, M., Bradley, D.D.C., Jandke, M., and Strohriegl, P.: Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 76, 2964 (2000).Google Scholar
48.Miteva, T., Meisel, A., Knoll, W., Nothofer, H.G., Scherf, U., Müller, D.C., Meerholz, K., Yasuda, A., and Neher, D.: Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv. Mater. 13, 565 (2001).Google Scholar
49.Chung, S.-F., Wen, T.-C., Chou, W.-Y., and Guo, T.-F.: High luminescence polarized polymer light-emitting diodes fabricated using aligned polyfluorene. Jpn. J. Appl. Phys. 45, L60 (2006).Google Scholar
50.Lee, C.H., Kang, G.W., Jeon, J.W., Song, W.J., and Seoul, C.: Blue electroluminescence and dynamics of charge carrier recombination in a vacuum-deposited poly(p-phenylene) thin film. Thin Solid Films 363, 306 (2000).Google Scholar
51.Guo, T.-F., Chang, S.-C., Yang, Y., Kwong, R.C., and Thompson, M.E.: Highly efficient electrophosphorescent polymer light-emitting devices. Org. Electron. 1, 15 (2000).Google Scholar
52.Sakamoto, K., Miki, K., Misaki, M., Sakaguchi, K., Chikamatsu, M., and Azumi, R.: Very thin photoalignment films for liquid crystalline conjugated polymers: application to polarized light-emitting diodes. Appl. Phys. Lett. 91, 183509 (2007).Google Scholar
53.Swiggers, M.L., Xia, G., Slinker, J.D., Gorodetsky, A.A., Malliaras, G.G., Headrick, R.L., Weslowski, B.T., Shashidhar, R.N., and Dulcey, C.S.: Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. Appl. Phys. Lett. 79, 1300 (2001).Google Scholar
54.Redecker, M., Bradley, D.D.C., Inbasekaran, M., and Woo, E.P.: Mobility enhancement through homogeneous nematic alignment of a liquid-crystalline polyfluorene. Appl. Phys. Lett. 74, 1400 (1999).CrossRefGoogle Scholar
55.Lee, M.J., Gupta, D., Zhao, N., Heeney, M., McCulloch, I., and Sirringhaus, H.: Anisotropy of charge transport in a uniaxially aligned and chain-extended, high-mobility, conjugated polymer semiconductor. Adv. Funct. Mater. 21, 932 (2011).Google Scholar
56.Hamadani, B.H., Gundlach, D.J., McCulloch, I., and Heeney, M.: Undoped polythiophene field-effect transistors with mobility of 1 cm2V−1s−1. Appl. Phys. Lett. 91, 243512 (2007).CrossRefGoogle Scholar
57.Noh, Y.-Y., Zhao, N., Caironi, M., and Sirringhaus, H.: Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784 (2007).Google Scholar
58.Derue, G., Serban, D.A., Leclère, P., Melinte, S., Damman, P., and Lazzaroni, R.: Controlled nanorubbing of polythiophene thin films for field-effect transistors. Org. Electron. 9, 821 (2008).Google Scholar
59.Zhu, R., Kumar, A., and Yang, Y.: Polarizing organic photovoltaics. Adv. Mater. 23, 4193 (2011).Google Scholar
60.Park, B., Huh, Y.H., and Shin, J.C.: In-plane anisotropy of photovoltaic effects in aligned polymer solar cells. Sol. Energy Mater. Sol. Cells 95, 3543 (2011).Google Scholar
61.Huh, Y.H., Shin, J.C., Kim, Y.C., and Park, B.: Reflective type Solar-LCDs by using polarizing polymer solar cells. Opt. Express 20, A278 (2012).CrossRefGoogle ScholarPubMed