Skip to main content Accessibility help
×
Home

Voltage-controlled magnetoelectric memory and logic devices

  • Xiang Li (a1), Albert Lee (a2), Seyed Armin Razavi (a3), Hao Wu (a4) and Kang L. Wang (a5)...

Abstract

Harnessing the nonvolatility of magnetism and the power of electric control, magnetoelectric devices that control magnetism electrically promise to deliver next-generation electronics systems that can store and compute large amounts of information with minimal power consumption and ultrafast processing speed. We highlight progress in magnetoelectric memory and logic prototypes using the voltage-controlled magnetic anisotropy (VCMA) effect. First, important performance metrics of VCMA-based magnetoelectric random access memory (MeRAM) are benchmarked against embedded complementary metal oxide semiconductor and other emerging embedded nonvolatile memories. We then discuss scaling of MeRAM from the physics and materials perspectives of the VCMA effect, as well as the use of magnetoelectric logic devices and circuits to realize new computing paradigms with VCMA. Finally, challenges to realize the full potential of VCMA-based memory and logic are presented: VCMA coefficient of 1000 fJ/V-m for energy-efficient write with low errors and tunneling magnetoresistance of 1000% for high density and low noise margin readout. New approaches for deterministic switching based on VCMA are needed. We share perspectives to address these challenges using new materials and device operation schemes.

Copyright

Footnotes

Hide All

This technical feature article is related to the theme of the November 2018 MRS Bulletin issue on “Materials for strain-mediated magnetoelectric systems.”

Footnotes

References

Hide All
1.Wulf, W.A., McKee, S.A., SIGARCH Comput. Archit. News 23 (1), 20 (1995).
2.Fujita, S., Noguchi, H., Ikegami, K., Takeda, S., Nomura, K., Abe, K., “Novel Memory Hierarchy with e-STT-MRAM for Near-Future Applications,” presented at the 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, April 24–27, 2017, pp. 1–2, doi:10.1109/VLSI-DAT.2017.7939700.
3.Zidan, M.A., Strachan, J.P., Lu, W.D., Nat. Electron. 1 (1), 22 (2018).
4.Slonczewski, J.C., J. Magn. Magn. Mater. 159 (1), L1 (1996).
5.Sun, J.Z., J. Magn. Magn. Mater. 202 (1), 157 (1999).
6.Miron, I.M., Gaudin, G., Auffret, S., Rodmacq, B., Schuhl, A., Pizzini, S., Vogel, J., Gambardella, P., Nat. Mater. 9 (3), 230 (2010).
7.Liu, L., Lee, O.J., Gudmundsen, T.J., Ralph, D.C., Buhrman, R.A., Phys. Rev. Lett. 109 (9), 096602 (2012).
8.Wang, K.L., Amiri, P.K., SPIN 02 (03), 1240002 (2012).
9.Wang, W.G., Li, M., Hageman, S., Chien, C.L., Nat. Mater. 11 (1), 64 (2012).
10.Maruyama, T., Shiota, Y., Nozaki, T., Ohta, K., Toda, N., Mizuguchi, M., Tulapurkar, A.A., Shinjo, T., Shiraishi, M., Mizukami, S., Ando, Y., Suzuki, Y., Nat. Nanotechnol. 4 (3), 158 (2009).
11.Li, X., PhD thesis, “Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memory,” University of California, Los Angeles (2018), https://escholarship.org/uc/item/2t0089x7.
12.Oboril, F., Bishnoi, R., Ebrahimi, M., Tahoori, M.B., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34 (3), 367 (2015).
13.Wang, K.L., Alzate, J.G., Khalili Amiri, P., J. Phys. D Appl. Phys. 46, 074003 (2013).
14.Suzuki, K., Swanson, S., A Survey of Trends in Non-Volatile Memory Technologies: 2000–2014, presented at the 2015 IEEE Int. Mem. Workshop (IMW), Monterey, CA, 2015, pp. 1–4, doi:10.1109/IMW.2015.7150274.
15.Lee, H., Lee, A., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 8, 1 (2017).
16.Duan, C.-G., Velev, J., Sabirianov, R., Zhu, Z., Chu, J., Jaswal, S., Tsymbal, E., Phys. Rev. Lett. 101 (13), 137201 (2008).
17.Nakamura, K., Shimabukuro, R., Fujiwara, Y., Akiyama, T., Ito, T., Freeman, A.J., Phys. Rev. Lett. 102 (18) (2009).
18.Chien, D., Li, X., Wong, K., Zurbuchen, M.A., Robbennolt, S., Yu, G., Tolbert, S., Kioussis, N., Amiri, P.K., Wang, K.L., Chang, J.P., Appl. Phys. Lett. 108 (11), 112402 (2016).
19.Li, X., Fitzell, K., Wu, D., Ty Karaba, C., Buditama, A., Yu, G., Wong, K.L., Altieri, N., Grezes, C., Kioussis, N., Tolbert, S., Zhang, Z., Chang, J.P., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 110 (5), 052401 (2017).
20.Kato, Y., Yoda, H., Saito, Y., Oikawa, S., Fujii, K., Yoshiki, M., Koi, K., Sugiyama, H., Ishikawa, M., Inokuchi, T., Shimomura, N., Shimizu, M., Shirotori, S., Altansargai, B., Ohsawa, Y., Ikegami, K., Tiwari, A., Kurobe, A., Appl. Phys. Express 11 (5), 053007 (2018).
21.Nozaki, T., Kozioł-Rachwał, A., Skowroński, W., Zayets, V., Shiota, Y., Tamaru, S., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Phys. Rev. Appl. 5 (4), 044006 (2016).
22.Alzate, J.G., PhD thesis, “Voltage-Controlled Magnetic Dynamics in Nanoscale Magnetic Tunnel Junctions,” University of California, Los Angeles (2014), https://escholarship.org/uc/item/6wm7x0rf.
23.Grezes, C., Ebrahimi, F., Alzate, J.G., Cai, X., Katine, J.A., Langer, J., Ocker, B., Khalili Amiri, P., Wang, K.L., Appl. Phys. Lett. 108 (1), 012403 (2016).
24.Kanai, S., Matsukura, F., Ohno, H., Appl. Phys. Lett. 108 (19), 192406 (2016).
25.Lee, H., PhD thesis, “Integration of Voltage-Controlled Spintronic Devices in CMOS Circuits,” University of California, Los Angeles (2017), https://escholarship.org/uc/item/0cx596qk.
26.Lee, H., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 7, 1 (2016).
27.Lee, H., Lee, A., Ebrahimi, F., Amiri, P.K., Wang, K.L., IEEE Electron Device Lett. 38 (9), 1343 (2017).
28.Wang, S.D., Pal, S., Li, T.M., Pan, A., Grezes, C., Khalili-Amiri, P., Wang, K L., Gupta, P., presented at the Design, Automation & Test in Europe Conference, Lausanne, Switzerland, March 27–31, 2017, p.1438.
29.Zhang, H., Kang, W., Wang, L.Z., Wang, K.L., Zhao, W.S., IEEE Trans. Electron Devices 64 (10), 4295 (2017).
30.Baek, S.C., Park, K.-W., Kil, D.-S., Jang, Y., Park, J., Lee, K.-J., Park, B.-G., Nat. Electron. 1 (7), 398 (2018).
31.Chung, S.W., Kishi, T., Park, J.W., Yoshikawa, M., Park, K.S., Nagase, T., Sunouchi, K., Kanaya, H., Kim, G.C., Noma, K., Lee, M.S., Yamamoto, A., Rho, K.M., Tsuchida, K., Chung, S.J., Yi, J.Y., Kim, H.S., Chun, Y.S., Oyamatsu, H., Hong, S.J., “4Gbit Density STT-MRAM Using Perpendicular MTJ Realized with Compact Cell Structure,” presented at the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2016, pp. 27.1.1–27.1.4, doi: 10.1109/IEDM.2016.7838490.
32.Nozaki, T., Koziol-Rachwal, A., Tsujikawa, M., Shiota, Y., Xu, X.D., Ohkubo, T., Tsukahara, T., Miwa, S., Suzuki, M., Tamaru, S., Kubota, H., Fukushima, A., Hono, K., Shirai, M., Suzuki, Y., Yuasa, S., NPG Asia Mater . 9 (2017).
33.Li, X., Yu, G., Wu, H., Ong, P.V., Wong, K., Hu, Q., Ebrahimi, F., Upadhyaya, P., Akyol, M., Kioussis, N., Han, X., Amiri, P.K., Wang, K.L., Appl. Phys. Lett. 107 (14), 142403 (2015).
34.Skowroński, W., Nozaki, T., Lam, D.D., Shiota, Y., Yakushiji, K., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Phys. Rev. B 91 (18), 184410 (2015).
35.Huai, Y., Gan, H., Wang, Z., Xu, P., Hao, X., Yen, B.K., Malmhall, R., Pakala, N., Wang, C., Zhang, J., Zhou, Y., Jung, D., Satoh, K., Wang, R., Xue, L., Pakala, M., Appl. Phys. Lett. 112 (9), 092402 (2018).
36.Wang, M., Cai, W., Cao, K., Zhou, J., Wrona, J., Peng, S., Yang, H., Wei, J., Kang, W., Zhang, Y., Langer, J., Ocker, B., Fert, A., Zhao, W., Nat. Commun. 9 (1), 671 (2018).
37.Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H., Appl. Phys. Lett. 93 (8), 082508 (2008).
38.Watanabe, K., Jinnai, B., Fukami, S., Sato, H., Ohno, H., Nat. Commun. 9 (1), 663 (2018).
39.Zhang, Y., Li, Y., Sun, Z., Li, H., Chen, Y., Jones, A.K., IEEE Trans. Very Large Scale Integr. VLSI Syst. 23 (6), 1170 (2015).
40.Lee, H., Grèzes, C., Wang, S., Ebrahimi, F., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 7, 1 (2016).
41.Liu, H., Kawami, T., Moges, K., Uemura, T., Yamamoto, M., Shi, F., Voyles, P.M., J. Phys. D Appl. Phys. 48 (16), 164001 (2015).
42.Song, T., Cai, X., Tu, M.W., Zhang, X., Huang, B., Wilson, N.P., Seyler, K.L., Zhu, L., Taniguchi, T., Watanabe, K., McGuire, M.A., Cobden, D.H., Xiao, D., Yao, W., Xu, X., Science 360, 1214 (2018).
43.Grezes, C., Lee, H., Lee, A., Wang, S., Ebrahimi, F., Li, X., Wong, K., Katine, J.A., Ocker, B., Langer, J., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Magn. Lett. 8, 1 (2017).
44.Lee, H., Lee, A., Wang, S.D., Ebrahimi, F., Gupta, P., Amiri, P.K., Wang, K.L., IEEE Trans. Very Large Scale Integr. VLSI Syst. 25 (7), 2027 (2017).
45.Shiota, Y., Nozaki, T., Tamaru, S., Yakushiji, K., Kubota, H., Fukushima, A., Yuasa, S., Suzuki, Y., Appl. Phys. Lett. 111 (2) (2017).
46.Kanai, S., Nakatani, Y., Yamanouchi, M., Ikeda, S., Sato, H., Matsukura, F., Ohno, H., Appl. Phys. Lett. 104 (21), 212406 (2014).
47.Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A., Ohno, H., Nat. Mater. 15 (5), 535 (2016).
48.Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L., Nat. Nanotechnol. 9 (7), 548 (2014).
49.Yoda, H., Shimomura, N., Ohsawa, Y., Shirotori, S., Kato, Y., Inokuchi, T., Kamiguchi, Y., Altansargai, B., Saito, Y., Koi, K., Sugiyama, H., Oikawa, S., Shimizu, M., Ishikawa, M., Ikegami, K., Kurobe, A., “Voltage-Control Spintronics Memory (VoCSM) Having Potentials of Ultra-Low Energy-Consumption and High-Density,” presented at the IEEE International Electron Devices Meeting (IEDM), San Francisco, 2016, pp. 27.6.1–27.6.4, doi:10.1109/IEDM.2016.7838495.
50.Bhattacharya, D., Atulasimha, J., ACS Appl. Mater. Interfaces 10 (20), 17455 (2018).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed