Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T12:47:00.416Z Has data issue: false hasContentIssue false

Three-Dimensional Carrier Confinement in Strain-Induced Self-Assembled Quantum Dots

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recent technological and materials advances in semiconductors have brought about the possibility of producing heterostructures within which carriers are confined to an ultrasmall region of space (a few thousand atoms) by a potential barrier. When the dimensions of the confining potential are smaller than the electron wavelength (a few tens of nanometers), the semiconductor electronic and optical properties are drastically altered. In these so-called quantum structures, carrier energy levels are quantized and their energy depends on the confining-potential dimensions and magnitude.

Some of these quantum structures have already found technological applications. For example the quantum-well (QW) semiconductor laser is part of every CD player. It is also widely used as the light source for intercontinental optical communications. The carrier confining potential in this case is provided by two wider bandgap semiconductor layers sandwiching a thin (3–20 nm) smaller bandgap semiconductor film. The carriers have two degrees of freedom within the QW. The QWs are grown by epitaxial deposition on a crystalline substrate. The substrate may or may not be lattice-matched with the epitaxial film. In some instances, a small lattice mismatch may be required to obtain the desired band-gap value for the QW material. These are the so-called pseudomorphically strained QW structures and devices.

Type
Heteroepitaxy and Strain
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gaines, J., Petroff, P.M., Kroemer, H., Simes, R.J., Geels, R.S., and English, J.H., J. Vac. Sci. Technol. B6 (1988) p. 1378; M.S. Miller, H. Weman, C.E. Pryor, M. Krishnamurthy, P.M. Petroff, H. Kroemer, and J.L. Merz, Phys. Rev. Lett. 68 (1992) p. 3464.CrossRefGoogle Scholar
2.Hu, S.Y., Yi, J.C., Miller, M.S., Leonard, D., Young, D.B., Gossard, A.C., Dagli, N., Petroff, P.M., and Coldren, L.A., IEEE J. Quantum Electron. 31 (1995) p. 1380.CrossRefGoogle Scholar
3.Brus, L., Appl. Phys. A 53 (1991) p. 465.CrossRefGoogle Scholar
4.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.CrossRefGoogle Scholar
5.Alivisatos, A.P., Harris, A., Levinos, N., Steigerwald, M., and Brus, L.E., J. Chem. Phys. 89 (1989) p. 4001.CrossRefGoogle Scholar
6.Leonard, D., Krishnamurthy, M., Reaves, C.M., Denbaars, S., Petroff, P.M., Appl. Phys. Lett. 63 (1993) p. 3203.CrossRefGoogle Scholar
7.Moison, J.M., Houzay, F., Barthe, F., Leprince, L., Andre, E., and Vatel, O., Appl. Phys. Lett. 64 (1994) p. 196.CrossRefGoogle Scholar
8.Tabuchi, M., Noda, S., and Saski, A., in Science and Technology of Mesoscopic Structures, edited by Namba, S., Hamaguchi, C., and Ando, T. (Springer, Tokyo, 1992) p. 379.CrossRefGoogle Scholar
9.Grundmann, M., Ledentsov, N.N., Heitz, R., Eckey, L., Christen, J., Bimberg, D., Ruvimov, S.S., Werner, P., Richter, U., Gosele, U., Heidenreich, J., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., and Alferov, Zh.I., Phys. Status Solidi B 118 (1994) p. 249.Google Scholar
10.Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B 50 15 (1994) p. 11,687.CrossRefGoogle Scholar
11.Apetz, R., Vescan, L., Hartman, A., Diecker, C., and Luth, H., Appl. Phys. Lett. 66 (1995) p. 445.CrossRefGoogle Scholar
12.Schittenhelm, P., Gail, M., Brunner, J., Nutzel, J.H., and Abstreiter, G., Appl. Phys. Lett. 66 (1995) p. 1292.CrossRefGoogle Scholar
13.Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64 (1990) p. 1943.CrossRefGoogle Scholar
14.Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57 (1990) p. 2110.CrossRefGoogle Scholar
15.Bressler-Hill, V., Lorke, A., Varma, S., Petroff, P.M., and Weinberg, H., Phys. Rev. B 50 (12) (1994) p. 8479.CrossRefGoogle Scholar
16.Priester, C. and Lannoo, J., Phys. Rev. Lett. 75 (1995) p. 93.CrossRefGoogle Scholar
17.Tanaka, T., Kono, T., Tsukamoto, S., Nishioka, M., Oshinowo, J., and Arakawa, Y., Appl. Phys. Lett. 66 (1995) p. 3663.Google Scholar
18.Leon, R., Petroff, P.M., Leonard, D., and Fafard, S., Science 267 (1995) p. 1966; R. Leon, S. Fafard, D. Leonard, J.L. Merz, and P.M. Petroff, Appl. Phys. Lett. 67 (1995) p. 521.CrossRefGoogle Scholar
19.Carlson, N., Seifert, W., Peterson, E., Castillo, P., Pistol, M.E., and Samuelson, L., Appl. Phys. Lett. 65 (1994) p. 3093.CrossRefGoogle Scholar
20.Petroff, P.M. and DenBaars, S.P., Superlattices and Microstructures 15 (1) (1994) p. 15.CrossRefGoogle Scholar
21.Kunterbach, A., Eberl, K., and Shitara, T., Appl. Phys. Lett. 66 (1995) p. 361.Google Scholar
22.Hatami, F., Ledentsov, N.N., Grundmann, M., Bohrer, J., Heinrichsdorff, F., Beer, M., Bimberg, D., Ruvimov, S.S., Werner, P., Gosele, U., Heidenreich, J., Ivanov, S.V., Meltser, B.Ya., Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 67 (1995) p. 656.CrossRefGoogle Scholar
23.Mui, D.S., Leonard, D., Coldren, L.A., and Petroff, P.M., Appl. Phys. Lett. 66 (1995) p. 1620.CrossRefGoogle Scholar
24.Tue, N., Petroff, P.M., Sakkaki, H., and Merz, J.L., Phys. Rev. B (in press); K. Eberl, P.M. Petroff, and P. Demeester, “Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth of Patterned Substrates,” in NATO ASI, Series E, vol. 298 (Kluwer Academic Publishers, Boston, 1995) p. 49.Google Scholar
25.Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75 (13) (1995) p. 2542.CrossRefGoogle Scholar
26.Medeiros-Ribeiro, G., Leonard, D., and Petroff, P.M., Appl. Phys. Lett. 66 (14) (1995) p. 1767.CrossRefGoogle Scholar
27.Drexler, H., Leonard, D., Hansen, W., Kotthaus, J.P., and Petroff, P.M., Phys. Rev. Lett. 73 (16) (1994) p. 2252.CrossRefGoogle Scholar
28.Marzin, J.Y., Gerard, J.M., Izrael, A., and Barrier, D., Phys. Rev. Lett. 73 (16) (1994) p. 716.CrossRefGoogle Scholar
29.Grundmann, M., Ledentsov, N.N., Heitz, R., Eckey, L., Christen, J., Bohrer, J., Bimberg, D., Ruvimov, S.S., Werner, P., Richter, U., Heidenreich, J., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., and Alferov, Zh.I., Phys. Rev. Lett. 74 (1995) p. 4043.CrossRefGoogle Scholar
30.Fafard, S., Leon, R., Leonard, D., Merz, J.J., and Petroff, P.M., Phys. Rev. B 50 (1994) p. 8086.CrossRefGoogle Scholar
31.Raymond, S., Fafard, S., Charbonneau, S., Leon, R., Petroff, P.M., and Merz, J.L., Phys. Rev. B 52 (October 1995) p. 17238.CrossRefGoogle Scholar
32.Medeiros-Ribeiro, G. and Petroff, P.M., Phys. Rev. B 52 (October 1995) (in press).Google Scholar
33.Lent, C.S., Tougaw, P.D., Porod, W., and Bernstein, G.H., Nanotechnology 4 (1993) p. 49.CrossRefGoogle Scholar