Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T00:56:34.689Z Has data issue: false hasContentIssue false

Theory of piezotronics and piezo-phototronics

Published online by Cambridge University Press:  10 December 2018

Yan Zhang
Affiliation:
University of Electronic Science and Technology of China, China; zhangyan@uestc.edu.cn
Yongsheng Leng
Affiliation:
George Washington University, USA; leng@gwu.edu
Morten Willatzen
Affiliation:
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China; morwi@fotonik.dtu.dk
Bolong Huang
Affiliation:
The Hong Kong Polytechnic University, Hong Kong; bolong.huang@polyu.edu.hk
Get access

Abstract

Piezotronic and piezo-phototronic devices exhibit high performance and have potential applications especially in next-generation self-powered, flexible electronics and wearable systems. In these devices, a strain-induced piezoelectric field at a junction, contact, or interface can significantly modulate the carrier generation, recombination, and transport properties. This mechanism has been studied based on the theory of piezotronics and piezo-phototronics. Simulation-driven materials design and device improvements have been greatly propelled by the finite element method, density functional theory, and molecular dynamics for achieving high-performance devices. Dynamical piezoelectric fields can also control new quantum states in quantum materials, such as in topological insulators, which pave a new path for enhancing performance and for investigating the fundamental physics of quantum piezotronics and piezo-phototronics.

Type
Piezotronics and Piezo-Phototronics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, W., Wang, Z.L., Nat. Rev. Mater. 1, 16031 (2016).CrossRefGoogle Scholar
Wang, Z.L., Nano Today 5, 540 (2010).CrossRefGoogle Scholar
Wang, Z.L., Piezotronics and Piezo-Phototronics (Springer, Berlin, 2013).Google Scholar
Wang, Z.L., Song, J.H., Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Wang, Z.L., “Nanogenerators and Nanopiezotronics,” presented at the 2007 IEEE International Electron Devices Meeting, Washington, DC, December 10–12, 2007, pp. 371374.Google Scholar
Qin, Y., Wang, X., Wang, Z.L., Nature 451, 809 (2008).CrossRefGoogle Scholar
Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L., Nano Lett. 6, 2768 (2006).CrossRefGoogle Scholar
Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., Wang, Z.L., Nano Lett. 8, 3035 (2008).CrossRefGoogle Scholar
Yang, Q., Wang, W., Xu, S., Wang, Z.L., Nano Lett. 11, 4012 (2011).CrossRefGoogle Scholar
Zheng, D.Q., Zhao, Z.M., Huang, R., Nie, J.H., Li, L.J., Zhang, Y., Nano Energy 32, 448 (2017).CrossRefGoogle Scholar
Wu, W., Wen, X., Wang, Z.L., Science 340, 952 (2013).CrossRefGoogle Scholar
Pan, C., Dong, L., Zhu, G., Niu, S., Yu, R., Yang, Q., Liu, Y., Wang, Z.L., Nat. Photonics 7, 752 (2013).CrossRefGoogle Scholar
Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L., Nature 514, 470 (2014).CrossRefGoogle Scholar
Wu, W., Wei, Y., Wang, Z.L., Adv. Mater. 22, 4711 (2010).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Wang, Z.L., Adv. Mater. 23, 3004 (2011).CrossRefGoogle Scholar
Zhang, Y., Wang, Z.L., Adv. Mater. 24, 4712 (2012).CrossRefGoogle Scholar
Zhang, Y., Yang, Y., Wang, Z.L., Energy Environ. Sci. 5, 6850 (2012).CrossRefGoogle Scholar
Liu, Y., Zhang, Y., Yang, Q., Niu, S., Wang, Z.L., Nano Energy 14, 257 (2015).CrossRefGoogle Scholar
Zhu, P., Zhao, Z., Nie, J., Hu, G., Li, L., Zhang, Y., Nano Energy 50, 744 (2018).CrossRefGoogle Scholar
Gu, K., Zheng, D.Q., Li, L.J., Zhang, Y., RSC Adv. 8, 8694 (2018).CrossRefGoogle Scholar
Chung, K.W., Wang, Z., Costa, J.C., Williamson, F., Ruden, P.P., Nathan, M.I., Appl. Phys. Lett. 59, 1191 (1991).CrossRefGoogle Scholar
Mitra, M., Drayton, J., Cooray, M.L.C., Karpov, V.G., Shvydka, D., J. Appl. Phys. 102, 034505 (2007).CrossRefGoogle Scholar
Boxberg, F., Sondergaard, N., Xu, H.Q., Nano Lett. 10, 1108 (2010).CrossRefGoogle Scholar
Nie, J.H., Hu, G.W., Li, L.J., Zhang, Y., Nano Energy 46, 423 (2018).CrossRefGoogle Scholar
Hu, Y., Zhang, Y., Chang, Y., Snyder, R.L., Wang, Z.L., ACS Nano 4, 4220 (2010).CrossRefGoogle Scholar
Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
Ikeda, T., Fundamentals of Piezoelectricity (Oxford University Press, Oxford, UK, 1996).Google Scholar
Maugin, G.A., Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988).Google Scholar
Soutas-Little, R.W., Elasticity, (Dover Publications, Mineola, NY, 1999) pp. XVI, 431.Google Scholar
Luo, L., Zhang, Y., Li, L.J., Semicond. Sci. Technol. 32, 044002 (2017).CrossRefGoogle Scholar
Jin, L.S., Yan, X.H., Wang, X.F., Hu, W.J., Zhang, Y., Li, L.J., J. Appl. Phys. 123, 025709 (2018).CrossRefGoogle Scholar
Natori, K., J. Appl. Phys. 76, 4879 (1994).CrossRefGoogle Scholar
Zhang, Y., Li, L.J., Nano Energy 22, 533 (2016).CrossRefGoogle Scholar
Li, L.J., Zhang, Y., J. Appl. Phys. 121, 214302 (2017).CrossRefGoogle Scholar
Li, L.J., Zhang, Y., Nano Res. 10, 2527 (2017).CrossRefGoogle Scholar
Huang, X., Jiang, C., Du, C., Jing, L., Liu, M., Hu, W., Wang, Z.L., ACS Nano 10, 11420 (2016).CrossRefGoogle Scholar
Jiang, C., Jing, L., Huang, X., Liu, M., Du, C., Liu, T., Pu, X., Hu, W., Wang, Z.L., ACS Nano 11, 9405 (2017).CrossRefGoogle Scholar
Baraki, R., Novak, N., Fromling, T., Granzow, T., Rodel, J., Appl. Phys. Lett. 105, 111604 (2014).CrossRefGoogle Scholar
Espinosa, H.D., Bernal, R.A., Minary-Jolandan, M., Adv. Mater. 24, 4656 (2012).CrossRefGoogle Scholar
Lei, Y.J., Leng, Y.S., “Molecular Simulation of Metal-ZnO Contact in ZnO Piezoelectric Nanogenerator,” presented at the 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, Suzhou, China, August 26–30, 2013, pp. 291294.Google Scholar
Tan, D., Xiang, Y., Leng, Y., MRS Adv. 2, 3433 (2017).CrossRefGoogle Scholar
Tan, D., Xiang, Y., Leng, Y., Leng, Y., Nano Energy 50, 291 (2018).CrossRefGoogle Scholar
Reed, E.J., Armstrong, M.R., Kim, K.Y., Glownia, J.H., Phys. Rev. Lett. 101, 014302 (2008).CrossRefGoogle Scholar
Dai, S., Dunn, M.L., Park, H.S., Nanotechnology 21, 445707 (2010).CrossRefGoogle Scholar
Zhang, J., Zhou, J., Nano Energy 50, 298 (2018).CrossRefGoogle Scholar
Zhou, Z., Qian, D., Minary-Jolandan, M., ACS Biomater. Sci. Eng. 2, 929 (2016).CrossRefGoogle Scholar
Huang, B., Inorg. Chem. 54, 11423 (2015).CrossRefGoogle Scholar
Huang, B.L., Sun, M.Z., Peng, D.F., Nano Energy 47, 150 (2018).CrossRefGoogle Scholar
Huang, B., Phys. Chem. Chem. Phys. 19, 12683 (2017).CrossRefGoogle Scholar
Momida, H., Oguchi, T., Appl. Phys. Express 11, 041201 (2018).CrossRefGoogle Scholar
Liu, W., Zhang, A.H., Zhang, Y., Wang, Z.L., Nano Energy 14, 355 (2015).CrossRefGoogle Scholar
Liu, W., Zhang, A., Zhang, Y., Wang, Z.L., Nanotechnology 27, 205204 (2016).CrossRefGoogle Scholar
Hinchet, R., Khan, U., Falconi, C., Kim, S.-W., Mater. Today 21, 611 (2018).CrossRefGoogle Scholar
Zhang, A.H., Peng, M.Z., Willatzen, M., Zhai, J.Y., Wang, Z.L., Nano Res. 10, 134 (2017).CrossRefGoogle Scholar
Zhu, H.Y., Wang, Y., Xiao, J., Liu, M., Xiong, S.M., Wong, Z.J., Ye, Z.L., Ye, Y., Yin, X.B., Zhang, X., Nat. Nanotechnol. 10, 151 (2015).CrossRefGoogle Scholar
Fei, R.X., Li, W.B., Li, J., Yang, L., Appl. Phys. Lett. 107, 173104 (2015).CrossRefGoogle Scholar
Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., Priya, S., Nat. Commun. 7, 13089 (2016).CrossRefGoogle Scholar
Voon, L.C.L.Y., Willatzen, M., J. Appl. Phys. 109, 031101 (2011).CrossRefGoogle Scholar
Barettin, D., Madsen, S., Lassen, B., Willatzen, M., Commun. Comput. Phys. 11, 797 (2012).CrossRefGoogle Scholar
Voon, L.C.L.Y., Willatzen, M., The k·p Method (Springer, Berlin, 2009).Google Scholar
Grundmann, M., Stier, O., Bimberg, D., Phys. Rev. B 52, 11969 (1995).CrossRefGoogle Scholar
Andreev, A.D., O’Reilly, E.P., Phys. Rev. B 62, 15851 (2000).CrossRefGoogle Scholar
Fonoberov, V.A., Balandin, A.A., J. Appl. Phys. 94, 7178 (2003).CrossRefGoogle Scholar
Marquardt, O., Boeck, S., Freysoldt, C., Hickel, T., Schulz, S., Neugebauer, J., O’Reilly, E.P., Comput. Mater. Sci. 95, 280 (2014).CrossRefGoogle Scholar
Lee, J., Wang, Z., Xie, H., Mak, K.F., Shan, J., Nat. Mater. 16, 887 (2017).CrossRefGoogle Scholar
Chu, Y., Kharel, P., Renninger, W.H., Burkhart, L.D., Frunzio, L., Rakich, P.T., Schoelkopf, R.J., Science 358, 199 (2017).CrossRefGoogle Scholar
Okazaki, Y., Mahboob, I., Onomitsu, K., Sasaki, S., Yamaguchi, H., Nat. Commun. 7, 11132 (2016).CrossRefGoogle Scholar
Bernevig, B.A., Hughes, T.L., Zhang, S.C., Science 314, 1757 (2006).CrossRefGoogle Scholar
Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.L., Zhang, S.C., Science 318, 766 (2007).CrossRefGoogle Scholar
Chang, C.Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.L., Ji, Z.Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.C., He, K., Wang, Y., Lu, L., Ma, X.C., Xue, Q.K., Science 340, 167 (2013).CrossRefGoogle Scholar
Miao, M.S., Yan, Q., Van de Walle, C.G., Lou, W.K., Li, L.L., Chang, K., Phys. Rev. Lett. 109, 186803 (2012).CrossRefGoogle Scholar
Hu, G., Zhang, Y., Li, L., Wang, Z.L., ACS Nano 12, 779 (2018).CrossRefGoogle Scholar
Dan, M., Hu, G., Li, L., Zhang, Y., Nano Energy 50, 544 (2018).CrossRefGoogle Scholar
Zhu, L., Zhang, Y., Lin, P., Wang, Y., Yang, L., Chen, L., Wang, L., Chen, B., Wang, Z.L., ACS Nano 12, 1811 (2018).CrossRefGoogle Scholar