Skip to main content Accessibility help
×
Home

Theory of piezotronics and piezo-phototronics

  • Yan Zhang (a1), Yongsheng Leng (a2), Morten Willatzen (a3) and Bolong Huang (a4)

Abstract

Piezotronic and piezo-phototronic devices exhibit high performance and have potential applications especially in next-generation self-powered, flexible electronics and wearable systems. In these devices, a strain-induced piezoelectric field at a junction, contact, or interface can significantly modulate the carrier generation, recombination, and transport properties. This mechanism has been studied based on the theory of piezotronics and piezo-phototronics. Simulation-driven materials design and device improvements have been greatly propelled by the finite element method, density functional theory, and molecular dynamics for achieving high-performance devices. Dynamical piezoelectric fields can also control new quantum states in quantum materials, such as in topological insulators, which pave a new path for enhancing performance and for investigating the fundamental physics of quantum piezotronics and piezo-phototronics.

Copyright

References

Hide All
1.Wu, W., Wang, Z.L., Nat. Rev. Mater. 1, 16031 (2016).
2.Wang, Z.L., Nano Today 5, 540 (2010).
3.Wang, Z.L., Piezotronics and Piezo-Phototronics (Springer, Berlin, 2013).
4.Wang, Z.L., Song, J.H., Science 312, 242 (2006).
5.Wang, Z.L., “Nanogenerators and Nanopiezotronics,” presented at the 2007 IEEE International Electron Devices Meeting, Washington, DC, December 10–12, 2007, pp. 371374.
6.Qin, Y., Wang, X., Wang, Z.L., Nature 451, 809 (2008).
7.Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L., Nano Lett. 6, 2768 (2006).
8.Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., Wang, Z.L., Nano Lett. 8, 3035 (2008).
9.Yang, Q., Wang, W., Xu, S., Wang, Z.L., Nano Lett. 11, 4012 (2011).
10.Zheng, D.Q., Zhao, Z.M., Huang, R., Nie, J.H., Li, L.J., Zhang, Y., Nano Energy 32, 448 (2017).
11.Wu, W., Wen, X., Wang, Z.L., Science 340, 952 (2013).
12.Pan, C., Dong, L., Zhu, G., Niu, S., Yu, R., Yang, Q., Liu, Y., Wang, Z.L., Nat. Photonics 7, 752 (2013).
13.Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L., Nature 514, 470 (2014).
14.Wu, W., Wei, Y., Wang, Z.L., Adv. Mater. 22, 4711 (2010).
15.Zhang, Y., Liu, Y., Wang, Z.L., Adv. Mater. 23, 3004 (2011).
16.Zhang, Y., Wang, Z.L., Adv. Mater. 24, 4712 (2012).
17.Zhang, Y., Yang, Y., Wang, Z.L., Energy Environ. Sci. 5, 6850 (2012).
18.Liu, Y., Zhang, Y., Yang, Q., Niu, S., Wang, Z.L., Nano Energy 14, 257 (2015).
19.Zhu, P., Zhao, Z., Nie, J., Hu, G., Li, L., Zhang, Y., Nano Energy 50, 744 (2018).
20.Gu, K., Zheng, D.Q., Li, L.J., Zhang, Y., RSC Adv. 8, 8694 (2018).
21.Chung, K.W., Wang, Z., Costa, J.C., Williamson, F., Ruden, P.P., Nathan, M.I., Appl. Phys. Lett. 59, 1191 (1991).
22.Mitra, M., Drayton, J., Cooray, M.L.C., Karpov, V.G., Shvydka, D., J. Appl. Phys. 102, 034505 (2007).
23.Boxberg, F., Sondergaard, N., Xu, H.Q., Nano Lett. 10, 1108 (2010).
24.Nie, J.H., Hu, G.W., Li, L.J., Zhang, Y., Nano Energy 46, 423 (2018).
25.Hu, Y., Zhang, Y., Chang, Y., Snyder, R.L., Wang, Z.L., ACS Nano 4, 4220 (2010).
26.Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981).
27.Ikeda, T., Fundamentals of Piezoelectricity (Oxford University Press, Oxford, UK, 1996).
28.Maugin, G.A., Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988).
29.Soutas-Little, R.W., Elasticity, (Dover Publications, Mineola, NY, 1999) pp. XVI, 431.
30.Luo, L., Zhang, Y., Li, L.J., Semicond. Sci. Technol. 32, 044002 (2017).
31.Jin, L.S., Yan, X.H., Wang, X.F., Hu, W.J., Zhang, Y., Li, L.J., J. Appl. Phys. 123, 025709 (2018).
32.Natori, K., J. Appl. Phys. 76, 4879 (1994).
33.Zhang, Y., Li, L.J., Nano Energy 22, 533 (2016).
34.Li, L.J., Zhang, Y., J. Appl. Phys. 121, 214302 (2017).
35.Li, L.J., Zhang, Y., Nano Res. 10, 2527 (2017).
36.Huang, X., Jiang, C., Du, C., Jing, L., Liu, M., Hu, W., Wang, Z.L., ACS Nano 10, 11420 (2016).
37.Jiang, C., Jing, L., Huang, X., Liu, M., Du, C., Liu, T., Pu, X., Hu, W., Wang, Z.L., ACS Nano 11, 9405 (2017).
38.Baraki, R., Novak, N., Fromling, T., Granzow, T., Rodel, J., Appl. Phys. Lett. 105, 111604 (2014).
39.Espinosa, H.D., Bernal, R.A., Minary-Jolandan, M., Adv. Mater. 24, 4656 (2012).
40.Lei, Y.J., Leng, Y.S., “Molecular Simulation of Metal-ZnO Contact in ZnO Piezoelectric Nanogenerator,” presented at the 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, Suzhou, China, August 26–30, 2013, pp. 291294.
41.Tan, D., Xiang, Y., Leng, Y., MRS Adv. 2, 3433 (2017).
42.Tan, D., Xiang, Y., Leng, Y., Leng, Y., Nano Energy 50, 291 (2018).
43.Reed, E.J., Armstrong, M.R., Kim, K.Y., Glownia, J.H., Phys. Rev. Lett. 101, 014302 (2008).
44.Dai, S., Dunn, M.L., Park, H.S., Nanotechnology 21, 445707 (2010).
45.Zhang, J., Zhou, J., Nano Energy 50, 298 (2018).
46.Zhou, Z., Qian, D., Minary-Jolandan, M., ACS Biomater. Sci. Eng. 2, 929 (2016).
47.Huang, B., Inorg. Chem. 54, 11423 (2015).
48.Huang, B.L., Sun, M.Z., Peng, D.F., Nano Energy 47, 150 (2018).
49.Huang, B., Phys. Chem. Chem. Phys. 19, 12683 (2017).
50.Momida, H., Oguchi, T., Appl. Phys. Express 11, 041201 (2018).
51.Liu, W., Zhang, A.H., Zhang, Y., Wang, Z.L., Nano Energy 14, 355 (2015).
52.Liu, W., Zhang, A., Zhang, Y., Wang, Z.L., Nanotechnology 27, 205204 (2016).
53.Hinchet, R., Khan, U., Falconi, C., Kim, S.-W., Mater. Today 21, 611 (2018).
54.Zhang, A.H., Peng, M.Z., Willatzen, M., Zhai, J.Y., Wang, Z.L., Nano Res. 10, 134 (2017).
55.Zhu, H.Y., Wang, Y., Xiao, J., Liu, M., Xiong, S.M., Wong, Z.J., Ye, Z.L., Ye, Y., Yin, X.B., Zhang, X., Nat. Nanotechnol. 10, 151 (2015).
56.Fei, R.X., Li, W.B., Li, J., Yang, L., Appl. Phys. Lett. 107, 173104 (2015).
57.Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., Priya, S., Nat. Commun. 7, 13089 (2016).
58.Voon, L.C.L.Y., Willatzen, M., J. Appl. Phys. 109, 031101 (2011).
59.Barettin, D., Madsen, S., Lassen, B., Willatzen, M., Commun. Comput. Phys. 11, 797 (2012).
60.Voon, L.C.L.Y., Willatzen, M., The k·p Method (Springer, Berlin, 2009).
61.Grundmann, M., Stier, O., Bimberg, D., Phys. Rev. B 52, 11969 (1995).
62.Andreev, A.D., O’Reilly, E.P., Phys. Rev. B 62, 15851 (2000).
63.Fonoberov, V.A., Balandin, A.A., J. Appl. Phys. 94, 7178 (2003).
64.Marquardt, O., Boeck, S., Freysoldt, C., Hickel, T., Schulz, S., Neugebauer, J., O’Reilly, E.P., Comput. Mater. Sci. 95, 280 (2014).
65.Lee, J., Wang, Z., Xie, H., Mak, K.F., Shan, J., Nat. Mater. 16, 887 (2017).
66.Chu, Y., Kharel, P., Renninger, W.H., Burkhart, L.D., Frunzio, L., Rakich, P.T., Schoelkopf, R.J., Science 358, 199 (2017).
67.Okazaki, Y., Mahboob, I., Onomitsu, K., Sasaki, S., Yamaguchi, H., Nat. Commun. 7, 11132 (2016).
68.Bernevig, B.A., Hughes, T.L., Zhang, S.C., Science 314, 1757 (2006).
69.Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.L., Zhang, S.C., Science 318, 766 (2007).
70.Chang, C.Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.L., Ji, Z.Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.C., He, K., Wang, Y., Lu, L., Ma, X.C., Xue, Q.K., Science 340, 167 (2013).
71.Miao, M.S., Yan, Q., Van de Walle, C.G., Lou, W.K., Li, L.L., Chang, K., Phys. Rev. Lett. 109, 186803 (2012).
72.Hu, G., Zhang, Y., Li, L., Wang, Z.L., ACS Nano 12, 779 (2018).
73.Dan, M., Hu, G., Li, L., Zhang, Y., Nano Energy 50, 544 (2018).
74.Zhu, L., Zhang, Y., Lin, P., Wang, Y., Yang, L., Chen, L., Wang, L., Chen, B., Wang, Z.L., ACS Nano 12, 1811 (2018).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed