Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T23:54:38.949Z Has data issue: false hasContentIssue false

Tailored Polymer Surfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The control of surface chemistry and topography has great technological relevance for numerous applications of polymers in textiles, adhesives, coatings, packaging, membranes, and biomedical implants. Conventionally, chemical modification of polymer surfaces has been achieved through kinetically governed practices that allow little control over the final surface composition or morphology. These chemically generated surfaces are also prone to reconstruction. Hence the development of inexpensive, scaleable routes to impart stable and more complex chemical functionality to polymer surfaces continues to be an active area of research. Apart from surface chemistry, the topography of a polymer surface often plays a determinant role in the adhesive, optical, and wetting characteristics of the surface. Consequently methods to produce surfaces of controlled texture are also of interest. Toward these goals, new, statistical, mechanics-based theoretical approaches, coupled with increased computing power, can now facilitate the first-principles design of polymer surfaces that are chemically and structurally “tailored” for a given application. In this article, we review some of the recent, significant developments in this area.

Type
Theory and Simulation of Polymers at Interfaces
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
2.Fleer, G.J., Stuart, M.A. Cohen, Scheutjens, J.M.H.M., Cosgrove, T., and Vincent, B., Polymers at Interfaces (Chapman & Hall, London, 1993); D.N. Theodorou, Macromolecules 21 (1988) p. 1422.Google Scholar
3.Szleifer, I. and Carignano, M.A., Adv. Chem. Phys. 94 (1996) p. 165.Google Scholar
4.Hariharan, A., Kumar, S.K., and Russell, T.P., Macromolecules 23 (1990) p. 3584.CrossRefGoogle Scholar
5.Jones, R.A.L., Norton, L.J., Shull, K.R., Kramer, E.J., Felcher, G.P., Karim, A., and Fetters, L.J., Macromolecules 25 (1992) p. 2359; K.R. Shull, Macromolecules 29 (1996) p. 2659.CrossRefGoogle Scholar
6.Shull, K.R., Mayes, A.M., and Russell, T.P., Macromolecules 26 (1993) p. 3929.CrossRefGoogle Scholar
7.Faldi, A., Genzer, J., Composto, R.J., and Dozier, W.D., Phys. Rev. Lett. 74 (1995) p. 3388.CrossRefGoogle Scholar
8.Hariharan, A., Kumar, S.K., and Russell, T.P., J. Chem. Phys. 98 (1993) p. 4163; P.P. Hong, F.J. Boerio, and S.D. Smith, Macromolecules 27 (1994) p. 596.CrossRefGoogle Scholar
9.Walton, D.G. and Mayes, A.M., Phys. Rev. E in press.Google Scholar
10.Wu, D.T. and Fredrickson, G.H., Macromolecules in press.Google Scholar
11.Walton, D.G., Soo, P.P., Mayes, A.M., Ankner, J.F., Kaiser, H., Johansson, J., and Smith, G.D. (unpublished).Google Scholar
12.Russell, T.P., MRS Bulletin 21 (1) (1996) p. 49.CrossRefGoogle Scholar
13.Kumar, S.K., Yethiraj, A., Schweizer, K.S., and Leermakers, F.A.M., J. Chem. Phys. 103 (1995) p. 10332.CrossRefGoogle Scholar
14.van der Linden, C.C., Leermakers, F.A.M., and Fleer, G.J., Macromolecules 29 (1996) p. 1172.CrossRefGoogle Scholar
15.Schaub, T.F., Kellogg, G.J., Mayes, A.M., Kulasekere, R., Ankner, J.F., and Kaiser, H., Macromolecules 29 (1996) p. 3982.CrossRefGoogle Scholar
16.Coulon, G., Collin, B., Ausserre, D., Chatenay, D., and Russell, T.P., J. Phys. France 52 (1990) p. 2801.CrossRefGoogle Scholar
17.Ausserre, D., Raghunathan, V.A., and Maaloum, M., J. Phys. II France 3 (1993) p. 1485.Google Scholar
18.Slawecki, T.M., PhD dissertation, The Pennsylvania State University, 1995.Google Scholar
19.Jandt, K.D., Kramer, E.J., and Heier, J., Langmuir 12 (1996) p. 3716.CrossRefGoogle Scholar
20.Krausch, G. and Straub, W., Europhys. Lett. 29 (1995) p. 353.Google Scholar
21.Keblinski, P., Kumar, S.K., Maritan, A., Koplik, J., and Banavar, J.R., Phys. Rev. Lett. 76 (1996) p. 1106.CrossRefGoogle Scholar
22.Milner, S.T., Science 251 (1991) p. 905.CrossRefGoogle Scholar
23.Irvine, D.J., Mayes, A.M., and Griffith-Cima, L., Macromolecules 29 (1996) p. 6037.CrossRefGoogle Scholar
24.Gersappe, D., Fasolka, M., Balazs, A.C., and Jacobson, S.H., J. Chem. Phys. 100 (1994) p. 9170.CrossRefGoogle Scholar
25.Marko, J.F. and Witten, T.A., Phys. Rev. Lett. 66 (1991) p. 1541.CrossRefGoogle Scholar
26.Lai, P-Y. and Binder, K., J. Chem. Phys. 96 (1992) p. 586.CrossRefGoogle Scholar
27.Grest, G.S. and Murat, M., Macromolecules 26 (1993) p. 3108.CrossRefGoogle Scholar
28.Yeung, C., Balazs, A.C., and Jasnow, D., Macromolecules 26 (1993) p. 1914.CrossRefGoogle Scholar
29.Huang, K. and Balazs, A.C., Macromolecules 26 (1993) p. 4736.CrossRefGoogle Scholar
30.Tang, H. and Szleifer, I., Europhys. Lett. 28 (1994) p. 19.CrossRefGoogle Scholar
31.Zhao, W., Krausch, G., Rafailovich, M.H., and Sokolov, J., Macromolecules 27 (1994) p. 2933.CrossRefGoogle Scholar
32.Siqueira, D.F., Kohler, K., and Stamm, M., Langmuir 11 (1995) p. 3092.CrossRefGoogle Scholar
33.Stamouli, A., Pelletier, E., Koutsos, V., van der Vegte, E., and Hadziioannou, G., Langmuir 12 (1996) p. 3221.CrossRefGoogle Scholar
34.Israels, R., Gersappe, D., Fasolka, M., Roberts, V.A., and Balazs, A.C., Macromolecules 27 (1994) p. 6679.CrossRefGoogle Scholar