Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T15:48:59.846Z Has data issue: false hasContentIssue false

Swift, Heavy Ions in Insulating and Conducting Oxides: Tracks and Physical Properties

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Transition metal oxides belong to the class of iono-covalent materials in which electrons are, to first order, localized in tight metal-oxygen bonds. They appear to be quite different from classical metals in which electrons are assumed to be delocalized in a free electron gas. Nevertheless, due to exchange interactions and hybridization of atomic orbitals, oxides exhibit many interesting physical properties like magnetic ordering and various electron transport properties that extend from wide gap insulators to narrow band conductors and high-temperature superconducting (HTS) superconductors. This class of materials appears well-suited to the study of the damage induced by heavy ion irradiation and its consequence on physical properties like electrical resistivity.

In this article, we will describe the results of heavy ion irradiations in magnetic oxides, exhibiting a wide palette of electron transport properties from insulators to metals through hopping semiconductors and in HTS copper oxides that are narrow-band metals above Tc. We will show that heavy ion irradiation, in addition to disordering matter, can induce changes in some physical properties like magnetic ordering and orientation of magnetic fields, and can produce large increases of the critical current. To account for these results, the thermal spike model will be considered as a possible way to understand the damage creation in iono-covalent compounds.

Type
Ion Tracks in Solids
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Studer, F., Houpert, C., Pascard, H., Spohr, R., Vetter, J., Fan, Jin-yun, and Toulemonde, M., Radiat Eff. Def. Sol. 116 (1991) p. 59.CrossRefGoogle Scholar
2.Toulemonde, M., Bouffard, S., and Studer, F., Nucl. Instrum. Methods B 91 (1994) p. 108.CrossRefGoogle Scholar
3.Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M., Phys, Rev. B48 (1993) p. 920.CrossRefGoogle Scholar
4.Houpert, C., Studer, F., Groult, D., and Toulemonde, M., Nucl. Instrum. Methods B39 (1989) p. 720.CrossRefGoogle Scholar
5.Toulemonde, M., Fuchs, G., Nguyen, N., Studer, F., and Groult, D., Phys. Rev. B35 (1987) p. 6560.CrossRefGoogle Scholar
6.Toulemonde, M., Enault, N., Fan, Jin-yun, and Studer, F., J. Appl. Phys. 68 (1990) p. 1545.CrossRefGoogle Scholar
7.Meftah, A., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M., Radiat. Eff. Def. Sol. 126 (1993) p. 251.CrossRefGoogle Scholar
8.Studer, F., Groult, D., Nguyen, N., and Toulemonde, M., Nucl. Instrum. Methods 19/20 (1987) p. 856.CrossRefGoogle Scholar
9.Toulemonde, M. and Studer, F., Phil. Mag. A58 (1988) p. 799.CrossRefGoogle Scholar
10.Costantini, J.M., Brisard, F., Meftah, A., Studer, F., and Toulemonde, M., Radiat. Eff. Def. Sol. 126 (1993) p. 233.CrossRefGoogle Scholar
11.Fleischer, R.L., Price, P.B., Walker, R.M., and Hubbard, E.L., Phys. Rev. 156 (1967) p. 353.CrossRefGoogle Scholar
12.Bourgault, D., Bouffard, S., Toulemonde, M., Groult, D., Provost, J., Studer, F., Nguyen, N., and Raveau, B., Phys. Rev. B39 (1989) p. 6549.CrossRefGoogle Scholar
13.Hardy, V., Simon, Ch., Provost, J., and Groult, D., Physica C206 (1993) p. 220.CrossRefGoogle Scholar
14.Wahl, A., Hervieu, M., Van Tendeloo, G., Hardy, V., Provost, J., Groult, D., Simon, Ch., and Raveau, B., Radiat. Eff. Def. Sol. 33 (1995) p. 293.CrossRefGoogle Scholar
15.Fleischer, R.L., Price, P.B., and Walker, R.M., Nuclear Tracks in Solids (University of California Press, Berkeley, 1975).CrossRefGoogle Scholar
16.Kiaumunzer, S., Chang-Lin, Li, Loffler, S., Rammensee, M., Schumacher, G., and Neitzer, H.C., Rad. Eff. Def. Sol. 108 (1989) p. 131.CrossRefGoogle Scholar
17.Dunlop, A., Legrand, P., Lesueur, D., Lorenzelli, N., Morillo, J., Barbu, A., and Bouffard, S., Europhys. Lett. 15 (1995) p. 765.CrossRefGoogle Scholar
18.Dufour, C., Audouard, A., Beuneu, F., Dural, J., Girard, J.P., Hairie, A., Levalois, M., Paumier, E., and Toulemonde, M., J. Phys. Condens. Matter 5 (1993) p. 4576.CrossRefGoogle Scholar
19.Levalois, M., Bogdanski, P., and Toulemonde, M., Nucl. Instrum. Methods B63 (1992) p. 14.CrossRefGoogle Scholar
20.Lifshitz, I.M., Kaganov, M.I., and Tanatarov, L.V., J. Nucl. Energy A12 (1960) p. 69.Google Scholar
21.Wang, Z.G., Dufour, Ch., Paumier, E., and Toulemonde, M., J. Phys.: Condens. Matter 6 (1994) p. 6733.Google Scholar
22.Lesueur, D. and Dunlop, A., Rad. Eff. Def. Sol. 126 (1993) p. 163.CrossRefGoogle Scholar
23.Kaganov, M.I., Lifshitz, I.M., and Tanatarov, L.V., Sov. Phys.-JETP 4 (1957) p. 173.Google Scholar
24.Zhu, Yemei, Cai, Z.X., Budhani, R.C., Suenaga, M., and Welch, D.O., Phys. Rev. B48 (1993) p. 6436.CrossRefGoogle Scholar
25.Meftah, A., Brisard, F., Costantini, J.M., Dooryhee, E., Ali, M. Hage, Hervieu, M., Stoquert, J.P., Studer, F., and Toulemonde, M., Phys. Rev. B49 (1994) p. 12,457.CrossRefGoogle Scholar
26.Szenes, G., Phys. Rev. B51 (1995) p. 8026.CrossRefGoogle Scholar
27.Studer, F., Houpert, Ch., Groult, D., Fan, Jin-yun, Meftah, A., and Toulemonde, M., Nucl. Instrum. Methods B82 (1993) p. 91.CrossRefGoogle Scholar
28.Studer, F., Meillon, S., Pascard, H., and Toulemonde, M., Proc. in Swift Heavy Ion in Matter 95 Conf. (NIMB, Caen, 1995).Google Scholar
29.Tinkham, M., ed., “Introduction to Superconductivity” (McGraw-Hill, New York, 1975).Google Scholar
30.Bean, CP., Rev. Mod. Phys. 36 (1964) p. 31.CrossRefGoogle Scholar
31.Müller, K.A., Takashige, M., and Bednorz, J.G., Phys. Rev. Lett. 58 (1987) p. 1143.CrossRefGoogle Scholar
32.Campbell, A.M. and Evetts, J.E., Adv. Phys. 178 (1959) p. 657.Google Scholar
33.Leprope, M., Monot, I., Delamare, M.P., Hervieu, M., CSimon, h., Provost, J., Desgardin, G., Raveau, B., Barbut, J.M., Bourgault, D., and Braithwaite, D., Cryogenics 34 (1994) p. 63.CrossRefGoogle Scholar
34.Yeshurun, Y. and Malozemoff, A., Phys. Rev. Lett. 60 (1988) p. 2202.CrossRefGoogle Scholar
35.Nelson, D.R. and Vinokur, V.M., Phys. Rev. B48 (1993) p. 13,060.CrossRefGoogle Scholar
36.Konczykonski, M., Chikumoto, N., Vinokur, V.M., and Feigelman, M.V., Phys. Rev. Lett. 51 (1995) p. 3957.Google Scholar
37.Hwa, T., Le Doussal, P., Nelson, D.R., and Vinokur, V.M., Phys. Rev. Lett. 71 (1993) p. 3545.CrossRefGoogle Scholar
38.Civale, L., Krusin-Elbaum, L., Thompson, J.R., Wheeler, R., Marwick, A.D., Kirk, M.A., Sun, Y.R., Holtzberg, F., and Feild, C., Phys. Rev. B50 (1994) p. 4202.Google Scholar
39.Hardy, V., Ruyter, A., Wahl, A., Maignan, A., Groult, D., Provost, J., and Simon, Ch., Physica C in press.Google Scholar