Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-18T16:44:31.293Z Has data issue: false hasContentIssue false

Surface Absorption of Monolayers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

When the first paper describing the formation of self-assembled monolayers (SAMs) of octadecyltrichlorosilane [CH3(CH2)17SCl3, or OTS] by adsorption on SiO2 was published, it could not have been predicted that this area of research would become so important in only one decade. Although Zisman was the first to discover that monolayers can be prepared by adsorption of a surfactant onto a clean metal surface, the real revolution in the field occurred when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions. A decrease in the use of moisture-sensitive alkyl trichlorosilanes and the increased use of crystalline gold surfaces were two important reasons for the success of these SAMs. Indeed, monolayers of alkanethiolates on gold are the most studied SAMs to date and thus deserve the most detailed discussion.

SAMs have been intensively studied in the past few years because of their relevance to science and technology. Due to their dense and stable structure, SAMs have potential applications in corrosion prevention, wear protection, and biosensing, for example. The ability to tailor both head and tail groups of the constituent molecules makes them ideal for gaining a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrate, and molecule-solvent interactions like ordering and growth, wetting adhesion, lubrication, and corrosion.

Type
Organic Thin Films
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sagiv, J., J. Am. Chem. Soc. 102 (1980) p. 92.CrossRefGoogle Scholar
2.Bigelow, W.C., Pickett, D.L., and Zisman, W.A., J. Colloid Interface Sci. 1 (1946) p. 513.CrossRefGoogle Scholar
3.Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105 (1983) p. 4,481.CrossRefGoogle Scholar
4. For a leading reference on self-assembled monolayers, see Ulman, A., An Introduction to Wtrathin OrganicFilms: From Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991).Google Scholar
5.Tirrell, D.A., Fournier, M.J., and Mason, T.L., MRS Bulletin XV (7) (1991) p. 23.CrossRefGoogle Scholar
6.Safran, S.A., Robbins, M.O., and Garoff, S., Phys. Rev. A33 (1986) p. 2,188.Google Scholar
7.Ulman, A., Eilers, J.E., and Tillman, N., Langmuir 5 (1989) p. 1,147.CrossRefGoogle Scholar
8.Silberzan, P., Léger, L., Ausserré, D., and Benattar, J.J., Langmuir 7 (1991) p. 1,647.CrossRefGoogle Scholar
9.McGovem, M.E., Kallury, K.M.R., and Thompson, M., Langmuir 10 (1994) p. 3,607.CrossRefGoogle Scholar
10.Tillman, N., Ulman, A., Schildkraut, J.S., and Penner, T.L., J. Am. Chem. Soc. 110 (1988) p. 6,136.CrossRefGoogle Scholar
11.Tillman, N., Ulman, A., and Penner, T.L., Langmuir 5 (1989) p. 101.CrossRefGoogle Scholar
12.Wasserman, S.R., Tao, Y-T., and Whitesides, J.M., Langmuir 5 (1989) p. 1,074.CrossRefGoogle Scholar
13.Maoz, R. and Sagiv, J., J. Colloid and Interf. Sci. 100 (1984) p. 465.CrossRefGoogle Scholar
14.Tripp, C.P. and Hair, M.L., Langmuir 8 (1992) p. 1,120.CrossRefGoogle Scholar
15.Cohen, S.R., Naaman, R., and Sagiv, J., J. Chem. Phys. 90 (1986) p. 3,054.CrossRefGoogle Scholar
16.Ohtake, T., Mino, N., and Ogawa, K., Langmuir 8 (1992) p. 2,081.CrossRefGoogle Scholar
17.Mathauser, K. and Frank, C.W., Langmuir 9 (1993) p. 3,002.CrossRefGoogle Scholar
18.Mathauser, K. and Frank, C.W., Langmuir 9 (1993) p. 3,446.CrossRefGoogle Scholar
19.Wasserman, S.R., Whitesides, G.M., Tidswell, I.M., Ocko, B.M., Pershan, P.S., and Axe, J.D., J. Am. Chem. Soc. 111 (1989) p. 5,852.CrossRefGoogle Scholar
20.Tidswell, I.M., Ocko, B.M., Pershan, P.S., Wasserman, S.R., Whitesides, G.M., and Axe, J.D., Phys. Rev. B 41 (1990) p. 1,111.CrossRefGoogle Scholar
21.Netzer, L., Iscovichi, R., and Sagiv, J., Thin Solid Films 100 (1983) p. 67.CrossRefGoogle Scholar
22.Pomerantz, M., Segmüller, A., Netzer, L., and Sagiv, J., Thin Solid Films 132 (1985) p. 153.CrossRefGoogle Scholar
23.Chaudhury, M.K. and Whitesides, G.M., Science 255 (1992) p. 1,230.CrossRefGoogle Scholar
24.Balachander, N. and Sukenik, C.N., Langmuir 6 (1990) p. 1,621.CrossRefGoogle Scholar
25.Li, D.Q., Ratner, M.A., Marks, T.J., Zhang, C.H., Yang, J., and Wong, G.K., J. Am. Chem. Soc. 112 (1990) p. 7,389.CrossRefGoogle Scholar
26.Kakkar, A.K., Yitzchaik, S., Roscoe, S.B., Kubota, F., Allan, D.S., Marks, T.J., Ku, Z., Lin, W., and Wong, G.K., Langmuir 9 (1993) p. 388.CrossRefGoogle Scholar
27.Yitzchaik, S., Roscoe, S.B., Kakkar, A.K., Allan, D.S., Marks, T.J., Xu, Z., Zhang, T., Lin, W., and Wong, G.K., J. Phys. Chem. 97 (1993) p. 6,958.CrossRefGoogle Scholar
28.Dressick, W.J., Dulcey, C.S., Georger, J.H., and Calvert, J.M., Chem. Mater. 5 (1993) p. 148.CrossRefGoogle Scholar
29.Chupa, J.A., Xu, S., Fishchetti, R.F., Strongin, R.M., McCauley, J.P., Smith, A.B., Blasie, J.K., J. Am. Chem. Soc. 115 (1993) p. 4,383.CrossRefGoogle Scholar
30.Allara, D.L. and Nuzzo, R.G., Langmuir 1 (1985) p. 45.CrossRefGoogle Scholar
31.Allara, D.L. and Nuzzo, R.G., Langmuir 1 (1985) p. 52.CrossRefGoogle Scholar
32.Ogawa, H., Chihera, T., and Taya, K., J. Am. Chem. Soc. 107 (1985) p. 1,365.CrossRefGoogle Scholar
33.Schlotter, N.E., Porter, M.D., Bright, T.B., and Allara, D.L., Chem. Phys. Lett. 132 (1986) p. 93.CrossRefGoogle Scholar
34.Chen, S.H. and Frank, C.F., Langmuir 5 (1989) p. 978.CrossRefGoogle Scholar
35.Tao, Y-T., J. Am. Chem. Soc. 115 (1993) p. 4,350.CrossRefGoogle Scholar
36.Tao, Y-T., Lee, M-T., and Chang, S.C., J. Am. Chem. Soc. 115 (1993) p. 9,547.CrossRefGoogle Scholar
37.Cao, G., Hong, H-G., and Mallouk, T.E., Acc. Chem. Res. 25 (1992) p. 420.CrossRefGoogle Scholar
38.Lee, H., Kepley, L.J., Hong, H-G., and Mallouk, T.E., J. Am. Chem. Soc. 110 (1988) p. 618.CrossRefGoogle Scholar
39.Schilling, M.L., Katz, H.E., Stein, S.M., Shane, S.F., Wilson, W.L., Buratto, S., Ungahse, S.B., Taylor, G.N., Putvinski, T.M., Chidsey, C.E.D., Langmuir 9 (1993) p. 2,156.CrossRefGoogle Scholar
40.Bent, S.F., Schilling, M.L., Wilson, W.L., Katz, H.E., and Harris, A.L., Chem. Mater. 6 (1994) p. 122.CrossRefGoogle Scholar
41.Lee, H., Kepley, L.J., Hong, H-G., Akhter, S., Mallouk, T.E., J. Phys. Chem. 92 (1988) p. 2,597.CrossRefGoogle Scholar
42.Katz, H.E., Schilling, M.L., Ungahse, S.B., Putvinski, T.M., Chidsey, C.E.D., in Supramolecular Architecture, edited by Bein, T. (Am. Chem. Soc. Symp. Ser. 499, Washington, DC, 1992) p. 24.CrossRefGoogle Scholar
43.Katz, H.E., Schilling, M.L., Chidsey, C.E.D., Putvinski, T.M., and Hutton, R.S., Chem. Mater. 3 (1991) p. 699.CrossRefGoogle Scholar
44.Ungahse, S.B., Wilson, W.L., Katz, H.E., Scheller, R.G., and Putvinski, T.M., J. Am. Chem. Soc. 114 (1992) p. 8,717.CrossRefGoogle Scholar
45.Putvinski, T.M., Schilling, M.L., Katz, H.E., Chidsey, C.E.D., Mujsce, A.M., and Emerson, A.B., Langmuir 6 (1990) p. 1,567.CrossRefGoogle Scholar
46.Katz, H.E., Scheller, R.G., Putvinski, T.M., Schilling, M.L., Wilson, W.L., and Chidsey, C.E.D., Science 254 (1991) p. 1,485.CrossRefGoogle Scholar
47.Linford, M.R. and Chidsey, C.E.D., J. Am. Chem. Soc. 115 (1993) p. 12,631.CrossRefGoogle Scholar
48.Linford, M.R., Chidsey, C.E.D., Fenter, P., and Eisenberger, P.M., J. Am. Chem. Soc. 116 (1995).Google Scholar
49.Dubois, L.H. and Nuzzo, R.G., Ann. Phys. Chem. 43 (1992) p. 437.CrossRefGoogle Scholar
50.Bain, C.D. and Whitesides, G.M., Adv. Mater. 1 (1989) p. 506.CrossRefGoogle Scholar
51.Folkers, J.P., Zerkowski, J.A., Laibinis, P.E., Seto, C.T., and Whitesides, G.M., in Supramolecular Architecture, edited by Bein, T. (Am. Chem. Soc. Symp. Ser. 499, Washington, DC, 1992) p. 10.CrossRefGoogle Scholar
52.Lee, T.R., Laibinis, P.E., Folkers, J.P., and Whitesides, G.M., Pure & Appl. Chem. 63 (1991) p. 821.CrossRefGoogle Scholar
53.Whitesides, G.M. and Ferguson, G.S., Chemtracts-Organic Chemistry 1 (1988) p. 171.Google Scholar
54.Troughton, E.B., Bain, C.D., Whitesides, G.M., Allara, D.L, and Porter, M.D., Langmuir 4 (1988) p. 365.CrossRefGoogle Scholar
55.Katz, E., Itzhak, N., Willner, I., J. Electroanal. Chem. 336 (1992) p. 357.CrossRefGoogle Scholar
56.Sabatani, E., Cohen-Boulakia, J., Bruening, M., Rubinstein, I., Langmuir 9 (1993) p. 2,974.CrossRefGoogle Scholar
57.Bryant, M.A., Joa, S.L., and Pemberton, J.E., Langmuir 9 (1992) p. 753.CrossRefGoogle Scholar
58.Hill, W. and Wehling, B., J. Phys. Chem. 97 (1993) p. 9,451.CrossRefGoogle Scholar
59.Li, T. T-T., Liu, H.Y., and Weaver, M.J., J. Am. Chem. Soc. 106 (1984) p. 1,233.CrossRefGoogle Scholar
60.Cooper, J.M., Greenough, K.R., and McNeil, C.J., J. Electroanal. Chem. 347 (1993) p. 267.CrossRefGoogle Scholar
61.Uvdal, K., Bodö, P., and Liedberg, B., J. Colloid Interf. Sci. 149 (1992) p. 162.CrossRefGoogle Scholar
62.Ihs, A., Uvdal, K., and Liedberg, B., Langmuir 9 (1993) p. 733.CrossRefGoogle Scholar
63.Arndt, T., Schupp, H., and Schepp, W., Thin Solid Films 178 (1989) p. 319.CrossRefGoogle Scholar
64.Mielczarski, J.A. and Yoon, R.H., Langmuir 7 (1991) p. 101.CrossRefGoogle Scholar
65.Edwards, T.R.G., Cunnane, V.J., Parsons, R., and Gani, D., J. Chem. Soc. Chem. Commun. (1989) p. 1,041.CrossRefGoogle Scholar
66.Arduengo, A.J., Moran, J.R., Rodriguez-Paradu, J., and Ward, M.D., J. Am. Chem. Soc. 112 (1990) p. 6,153.CrossRefGoogle Scholar
67.Xue, G., Huang, X-Y., Dong, J., and Zhang, J., J. Electroanal. Chem. 310 (1991) p. 139.CrossRefGoogle Scholar
68.Bharathi, S., Yegnaraman, V., and Rao, G.P., Langmuir 9 (1993) p. 1,614.CrossRefGoogle Scholar
69.Samanat, M.G., Broen, C.A., and Gordon, J.G., Langmuir 8 (1992) p. 1,615.CrossRefGoogle Scholar
70.Somorjai, G.A., Chemistry in Two Dimensions—Surfaces (Cornell University Press, Ithaca, 1982).Google Scholar
71.King, D.E., J. Vac. Sci. Technol. in press.Google Scholar
72.Ulman, A., J. Mater. Educ. 11 (1989) p. 205.Google Scholar
73.Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y-T., Parikh, A.N., and Nuzzo, R.G., J. Am. Chem. Soc. 113 (1991) p. 7,152.CrossRefGoogle Scholar
74.Walczak, M.W., Chung, C., Stole, S.M., Widrig, C.A., and Porter, M.D., J. Am. Chem. Soc. 113 (1991) p. 2,370.CrossRefGoogle Scholar
75.Laibinis, P.E. and Whitesides, G.M., J. Am. Chem. Soc. 112 (1992) p. 1,990.CrossRefGoogle Scholar
76.Ihs, A. and Liedberg, B., Langmuir 10 (1994) p. 734.CrossRefGoogle Scholar
77.Laibinis, P.E. and Whitesides, G.M., J. Am. Chem. Soc. 114 (1992) p. 9,022.CrossRefGoogle Scholar
78.Shimazu, K., Sato, Y., Yagi, I., and Uosaki, K., Bull Chem. Soc. Jpn. 67 (1994) p. 863.Google Scholar
79.Demoz, A. and Harrison, D.J., Langmuir 9 (1993) p. 1,046.CrossRefGoogle Scholar
80.Mandler, D., preprint.Google Scholar
81.Stratmann, M., Adv. Mater. 2 (1990) p. 191.CrossRefGoogle Scholar
82.Volmer, M., Stratmann, M., Viefhaus, H., Surf. and Interf. Analysis 16 (1990) p. 278.CrossRefGoogle Scholar
83.Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., J. Chem. Soc. Chem. Commun. (1994) p. 801.CrossRefGoogle Scholar
84.Sheen, C.W., Shi, J.X., Martensson, J., Parikh, A.N., and Allara, D.L., J. Am. Chem. Soc. 114 (1992) p. 1,514.CrossRefGoogle Scholar
85.Bain, C.D., Troughton, E.B., Tao, Y-T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., J. Am. Chem. Soc. 111 (1989) p. 321.CrossRefGoogle Scholar
86.Buck, M., Eisert, F., Fischer, J., Grunze, M., and Träger, F., Appl. Phys. A53 (1991) p. 552.CrossRefGoogle Scholar
87.Buck, M., Eisert, F., and Grunze, M., Ber. Bunsenges. Phys. Chem. 97 (1993) p. 399.CrossRefGoogle Scholar
88.Nuzzo, R.G., Fusco, F.A., and Allara, D.L., J. Am. Chem. Soc. 109 (1987) p. 2,358.CrossRefGoogle Scholar
89.Porter, M.D., Bright, T.B., Allara, D.L., and Chidsey, C.E.D., J. Am. Chem. Soc. 109 (1987) p. 3,559.CrossRefGoogle Scholar
90.Bain, C.D., Biebuyck, H.A., and Whitesides, G.M., Langmuir 5 (1989) p. 723.CrossRefGoogle Scholar
91.Nuzzo, R.G., Zegarski, B.R., and Dubois, L.H., J. Am. Chem. Soc. 109 (1987) p. 733.CrossRefGoogle Scholar
92.Li, Y., Huang, J., McIver, R.T. Jr., and Hemminger, J.C., J. Am. Chem. Soc. 114 (1992) p. 2,428.CrossRefGoogle Scholar
93.Widrig, C.A., Chung, C., and Porter, M.D., J. Electroanal. Chem. 310 (1991) p. 335.CrossRefGoogle Scholar
94.Bryant, M.A. and Pemberton, J.E., J. Am. Chem. Soc. 113 (1991) p. 3,630. M.A. Bryant and J.E. Pemberton, J. Am. Chem. Soc. 113 (1991) p. 8,284.Google Scholar
95.Bryant, M.A. and Pemberton, J.E., J. Am. Chem. Soc. 113 (1991) p. 8,284.CrossRefGoogle Scholar
96.Strong, L. and Whitesides, G.M., Langmuir 4 (1988) p. 546.CrossRefGoogle Scholar
97.Chidsey, C.E.D. and Loiacono, D.N., Langmuir 6 (1990) p. 709.Google Scholar
98.Dubois, L.H., Zegarski, B.R., arid Nuzzo, R.G., J. Chem. Phys. 98 (1993) p. 678.CrossRefGoogle Scholar
99.Chidsey, C.E.D., Liu, G., Rowntree, Y.P., and Scoles, G., J. Chem. Phys. 91 (1989) p. 4,421.CrossRefGoogle Scholar
100.Alves, C.A., Smith, E.L., and Porter, M.D., J. Am. Chem. Soc. 114 (1992) p. 1,222.CrossRefGoogle Scholar
101.Poirier, G.E., Tarlov, M.J., and Rushneier, H.E., Langmuir 10 (1994) p. 3,383.CrossRefGoogle Scholar
102.Fenter, P., Eisenberger, P., and Liang, K.S., Phys. Rev. Lett. 70 (1993) p. 2,447.CrossRefGoogle Scholar
103.Camillone, N., Chidsey, C.E.D., Liu, G-Y., and Scoles, G., J. Phys. Chem. 98 (1993) p. 3,503.CrossRefGoogle Scholar
104.Poirier, G.E. and Tarlov, M.J., Langmuir 10 (1994) p. 2,859.Google Scholar
105.Edinger, G., Gölzhäuser, A., Demota, K., Wöll, C., and Grunze, M., Langmuir 9 (1993) p. 4.CrossRefGoogle Scholar
106.Schönenberger, C., Sondag-Huethorst, J.A.M., Jorritsma, J., and Fokkink, L.G.J., Langmuir 10 (1994) p. 611.CrossRefGoogle Scholar
107.Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J.E., J. Am. Chem. Soc. 115 (1993) p. 9,389.CrossRefGoogle Scholar
108.Majda, M., private communication.Google Scholar
109.Sellers, H., Surf. Sci. 294 (1993) p. 99.CrossRefGoogle Scholar
110.Grunze, M., Physica Scripta, in press.Google Scholar
111.McCarley, R.L., Dunaway, D.J., Willicut, R.J., Langmuir 9 (1993) p. 2,775.CrossRefGoogle Scholar
112.Bucher, J-P., Santesson, L., and Kern, K., Langmuir 10 (1994) p. 979.CrossRefGoogle Scholar
113.Nuzzo, R.G., Dubois, L.H., and Allara, D.L., J. Am. Chem. Soc. 112 (1990) p. 558.CrossRefGoogle Scholar
114.Chidsey, C.E.D. and Loiacono, D.N., Langmuir 6 (1990) p. 682.CrossRefGoogle Scholar
115.Dohlhofer, K., Figura, J., Fuhrhop, J-H., Langmuir 8 (1992) p. 1,811.CrossRefGoogle Scholar
116.Chidsey, C.E.D., Bertozzi, C.R., Putvinski, T.M., and Mujsce, A.M., J. Am. Chem. Soc. 112 (1990) p. 4,301.CrossRefGoogle Scholar
117.Uosaki, K., Sato, Y., and Kita, H., Langmuir 7 (1991) p. 1,510.CrossRefGoogle Scholar
118.Chidsey, C.E.D., Science 251 (1991) p. 919.CrossRefGoogle Scholar
119.Popenoe, D.D., Deinhammer, R.S., and Porter, M.D., Langmuir 8 (1992) p. 2,521.CrossRefGoogle Scholar
120.Sato, Y., Frey, B.L., Corn, R.M., and Uosaki, K., Bull. Chem. Soc. Jpn. 67 (1994) p. 21.CrossRefGoogle Scholar
121.Collard, D.M. and Fox, M.A., Langmuir 7 (1991) p. 1,192.CrossRefGoogle Scholar
122.Creager, S.E. and Rowe, G.K., Analytica Chim. 246 (1991) p. 233.CrossRefGoogle Scholar
123.Rowe, G.K. and Creager, S.E., Langmuir 7 (1991) p. 2,307.CrossRefGoogle Scholar
124.Rowe, G.K. and Creager, S.E., Langmuir 10 (1994) p. 1,186.CrossRefGoogle Scholar
125.Häussling, L., Ringsdorf, H., Schmitt, F-J., and Knoll, W., Langmuir 7 (1991) p. 1,837.CrossRefGoogle Scholar
126.Häussling, L., Michel, B., Ringsdorf, H., and Rohrer, H., Angewandte Chem. Int. Ed. 30 (1991) p. 679.Google Scholar
127.Schmitt, F-J., Häussling, L., Ringsdorf, H., and Knoll, W., Thin Solid Films 210/211 (1992) p. 815.CrossRefGoogle Scholar
128.Spinke, J., Liley, J., Guder, H-J., Angermaier, L., and Knoll, W., Langmuir 9 (1993) p. 1,821.CrossRefGoogle Scholar
129.Obeng, Y.S. and Bard, A.J., Langmuir 7 (1991) p. 195.CrossRefGoogle Scholar
130.Yip, C.M. and Ward, M.D., Langmuir 10 (1994) p. 549.CrossRefGoogle Scholar
131.Zak, J., Yuan, H., Woo, K., and Porter, M.D., Langmuir 9 (1993) p. 2,772.CrossRefGoogle Scholar
132.Hutchinson, J.E., Postlethwaite, T.A., and Murray, R.W., Langmuir 9 (1993) p. 3,277.CrossRefGoogle Scholar
133.Duevel, R.V. and Corn, R.M., Anal. Chem. 64 (1992) p. 337.CrossRefGoogle Scholar
134.Kim, T., Crooks, R.M., Tsen, M., and Sun, L., preprint.Google Scholar
135.Ulman, A. and Tillman, N., Langmuir 5 (1989) p. 1,418.CrossRefGoogle Scholar
136.Schilling, M.L., Katz, H.E., Stein, S.M., Shane, S.F., Wilson, W.L., Buratto, S., Ungahse, S.B., Taylor, G.N., Putvinski, T.M., Chidsey, C.E.D., Langmuir 9 (1993) p. 2,156.CrossRefGoogle Scholar
137.Bent, S.F., Schilling, M.L., Wilson, W.L., Katz, H.E., Harris, A.L., Chem. Mater. 6 (1994) p. 122.CrossRefGoogle Scholar
138.Bertilsson, L. and Liedberg, B., Langmuir 9 (1993) p. 141.CrossRefGoogle Scholar
139.Evans, S.D., Sharma, R., and Ulman, A., Langmuir 7 (1991) p. 156.CrossRefGoogle Scholar
140.Löfås, S. and Johnsson, B., J. Chem. Soc. Chem. Commun. (1990) p. 1,526.CrossRefGoogle Scholar