Skip to main content Accessibility help
×
Home

Structure and Strength of Multilayers

  • B.M. Clemens, H. Kung and S.A. Barnett

Extract

Nanometer-scale multilayer materials exhibit a wealth of interesting structural and mechanical property behaviors. Physical-vapor-deposition technology allows almost unlimited freedom to choose among elements, alloys, and Compounds as layering constituents and to design and produce materials with compositional and structural periodicities approaching the atomic Scale. These materials have tremendous interface area density, approaching 106 mm/mm3, so that a Square centimeter area of a one-micron-thick multilayer film with a bilayer period of 2 nm has an interface area of roughly 1,000 cm2. Hence interfacial effects can dominate multilayer structure and properties leading to unusually large strains and frequently stabilization of metastable structures. The atomic-scale layering of different materials also leads to very high hardnesses and good wear resistance. These materials are a test-bed for examination of the fundamental aspects of phase stability and for exploring mechanical strengthening mechanisms. They are also becoming increasingly interesting for applications such as hard coatings, x-ray optical elements, in microelectromechanical Systems (MEMS), and in magnetic recording media and heads.

In this article, we review some of the interesting structures and mechanical properties that have been observed in nanometer-scale artificial multilayer structures.

Superlattice thin films are readily deposited by vapor-phase techniques such as sputter deposition, evaporation, and chemical vapor deposition, as well as by electrochemical deposition. Superlattice deposition Systems are similar to conventional film deposition Systems, except for the provision to modulate the fluxes and thereby produce alternating super-lattice layers.

Copyright

References

Hide All
1.Mirkarimi, P.B., Shinn, M., and Barnett, S.A., J. Vac. Sci. Technol. A 10 (1992) p. 75.
2.Payne, A.P., Clemens, B.M., and Brennan, S.M., Rev. Sci. Instrum. 63 (1992) p. 1147.
3.Lairson, B.M., Visokay, M.R., Sinclair, R., Hagstroni, S., and Clemens, B.M., Appl. Phys. Lett. 61 (1992) p. 1390.
4.Daniels, B.J., PhD thesis, Stanford University, 1995.
5.Oliver, W.C., Hutchings, R., and Pethica, J.B., ASTM Spec. Tech. Pub. 889 (1986) p. 90.
6.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 (1992) p. 1564.
7.Fabes, B.D., Oliver, W.C., McKee, R.A., and Walker, F.J., J. Mater. Res. 7 (1992) p. 3056.
8.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 (1986) p. 601.
9.Fullerton, E.E., Schuller, J.K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45 (1992) p. 9292.
10.Fullerton, E.E., Schuller, J.K., Vanderstraeten, H., and Bruynseraede, Y., MRS Bulletin XVII (1992) p. 33.
11.Clemens, B.M. and Gay, J.G., Phys. Rev. B 35 (1987) p. 9337.
12.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Polycrystalline Thin Films—Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Floro, j.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, 1994) p. 549.
13.Lu, Y-C., Kung, H., Nastasi, M.A., Necker, C.T., Hollander, M.G., Peralta, P.D., and Mitchell, T.E., J. Vac. Sci. Technol. submitted 1998.
14.Lu, Y-C., Kung, H., Griffin, A.J. Jr., Nastasi, M.A., and Mitchell, T.E.J. Mater. Res. 12 (1997) p. 1939.
15.Kung, H., Lu, Y-C., Griffin, A.J. Jr., Nastasi, M.A., Mitchell, T.E., and Embury, J.D., Appl. Phys. Lett. 71 (1997) p. 2103.
16.Misra, A., Kung, H., Mitchell, T.E., Jervis, T., and Nastasi, M.A., in Thin Films: Stresses and Mechanical Properties VII, edited by Cammarata, R.C, Busso, E.P., Nastasi, M.A., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998).
17.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Thin Films: Sresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, 1995) p. 373.
18.English, G.R., Simenson, G.F., Clemens, B.M., and Nix, W.D., Thin Films: Sresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, 1995) p. 363.
19.Madan, A., Wang, Y-Y., Barnett, S.A., Engstrom, C., Ljungcrantz, H., Hultman, L., and Grimsditch, M., J. Appl. Phys. 84 (1998) p. 776.
20.Hultman, L., Shinn, M., Mirkarimi, P.B., and Barnett, S.A., J. Cryst. Growth 135 (1994) p. 309.
21.Payne, A.P., Nix, W.D., Lairson, B.M., and Clemens, B.M., Phys. Rev. B 47 (13) (1993) p. 730.
22.Payne, A.P., Lairson, B.M., Brennan, S.M., Daniels, B.J., Rensing, N.M., and Clemens, B.M., Phys. Rev. B (16) p. 16064.
23.Bain, J.A., Chyung, L.J., Brennan, S.M., and Clemens, B.M., Phys. Rev. B 44 (1991) p. 1184.
24.Chu, X., PhD thesis, Northwestern University, 1995.
25.Wu, M.L., Lin, X.W., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., J. Vac. Sci. Technol. A 15 (1997) p. 946.
26.Li, D., Lin, X.W., Cheng, S.C., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., Appl. Phys. Lett. 68 (1996) p. 1211.
27.Goodman, S.R., Brenner, S.S., and Low, J.T., Metall. Trans. 4 (1973) p. 2363.
28.Heinrich, B., Arrott, A.S., Cochran, J.F., Celinski, Z., and Myrtle, K., in Science and Technology of Nanostructured Magnetic Materials, edited by Hadjipanayis, G.C and Prinz, G.A. (Plenum Press, New York, 1991) p. 15.
29.Schmidt, C., Ernst, F., Finnis, M.W., and Vitek, V., Phys. Rev. Lett. 75 (1995) p. 2160.
30.El-Batanouny, M. and Strongin, M., Phys. Rev. B 31(1985) p. 4798.
31.Ruckman, M.W., Strongin, M., and Pan, X. in Physical and Chemical Properties of Thin Metal Overlayers and Alloy Surfaces, edited by Zehner, D.M. (Mater. Res. Soc. Symp. Proc. 83, Pittsburgh, 1987) p. 85.
32.Hufnagel, T.C., Kautzky, M.C., Daniels, B.J., and Clemens, B.M., J. Appl. Phys. In press.
33.Baker, S.P., Small, M.K., Vlassak, J.J., Daniels, B.J., and Nix, W.D., in Proc. NATO Advanced Study Institute, Mechanical Properties and Deformation Behavior of Materials Having Ultra Fine Microstructures (Praia do Porto Novo, Portugal, June 29–July 30, 1992).
34.Small, M.K., Daniels, B.J., Clemens, B.M., and Nix, W.D., J. Mater. Res. 9 (1994) p. 25.
35.Shinn, M. and Barnett, S.A., Appl. Phys. Lett. 64 (1994) p. 61.
36.Misra, A., Verdier, M., Lu, Y-C., Kung, H., Mitchell, T.E., Nastasi, M.A., and Embury, J.D., Scripta Mater. 39 (1998) p. 555.
37.Koehler, J.S., Phys. Rev. B 2 (1970) p. 547.
38.Head, A.K., Philos. Mag. 44 (1953) p. 92.
39.Yashar, P., Chu, X., Barnett, S.A., Rechner, J., Wang, Y.Y., Wong, M.S., and Sproul, W.D., Appl. Phys. Lett. 72 (1998) p. 9879.
40.Doerner, M.F., PhD thesis, Stanford University, 1987.
41.Sevillano, J., “Strength of Metals and Alloys,” Proc. ICSMA 5, edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergammon Press, New York, 1979) p. 819.
42.Armstrong, R.W., “The Influence of Polycrystalline Grain Size on Mechanical Properties,” in Advances in Materials Research, vol.4, edited by Herman, H. (Interscience Publishers, New York, 1970) p. 101.
43.Anderson, P.M. and Li, C., Nanostruc. Mater. 5 (1995) p. 349.
44.Mitchell, T.E., Lu, Y-C., Griffin, A.J. Jr., Nastasi, M.A., and Kung, H., J. Am. Ceram. Soc. 80 (1997) p. 1673.
45.Nix, W.D., Mater. Sci. Eng. A 234–236 (1997) p. 37.
46.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (1995) p. 4403.
47.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7 (1992) p. 901.
48.Daniels, B.J., Nix, W.D., and Clemens, B.M., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B.M., Clemens, B.M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, 1995) p. 315.
49.Daniels, B.J., Nix, W.D., and Clemens, B.M., Thin Solid Films 253 (1994) p. 218.
50.Verdier, M., Niewczas, M., Embury, J.D., Nastasi, M.A., and Kung, H., in Fundamentals of Nanoindentation and Nanotribology, edited by Baker, S., Burnham, N., Gerberich, W., and Moody, N.. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998).

Related content

Powered by UNSILO

Structure and Strength of Multilayers

  • B.M. Clemens, H. Kung and S.A. Barnett

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.