Skip to main content Accessibility help

Spectroscopic Studies on the Structures of Phosphate Sealing Glasses

  • Richard K. Brow, Todd M. Alam, David R. Tallant and R. James Kirkpatrick


Phosphate glasses generally have lower glass-transition temperatures and greater thermal-expansion coefficients than silicate and borate glasses, and so are candidate materials for specialty glass-metal sealing applications. Phosphate glasses also have desirable optical properties (rare-earth stimulated-emission cross sections, low thermo-optical coefficients, ultraviolet transparency, etc.) and so are used as laser glasses. Recent developments of novel compositions for biomedical applications and as fast-ion conductors have also revived interest in the study of phosphate glass structures.

The structure/property relationships in simple phosphate glasses have not received nearly the attention paid to silicate and borate-based systems. This is partially due to the difficulty in preparing anhydrous compositions with more than 50-mol% P2O5. Ultraphosphate compositions (where the [O]/[P] ratio is less than 3) are highly reactive to ambient water. In addition because P2O5 sublimes at about 300°C, ultraphosphate glasses have not been studied to the extent that metaphosphate ([O]/[P] = 3) and polyphosphate ([O]/[P] > 3) compositions have.



Hide All
1.Wilder, J.A., J. Non-Cryst. Solids 38/39 (1980) p. 879.
2.Brow, R.K., Kovacic, L., and Loehman, R.E., Ceram. Trans. 70 (1996) p. 177.
3.Weber, M.J., J. Non-Cryst. Solids 123 (1990) p. 208.
4.Hudgens, J.J. and Martin, S.W., J. AM. Ceram. Soc. 76 (1993) p. 1691.
5.Hoppe, U., Walter, G., Barz, A., Stachel, D., and Hannon, A.C., J. Phys. Cond. Matter 10 (1998) p. 261.
6.Van Wazer, J.R., Phosphorus and Its Compounds, vol. 1 (Interscience, New York, 1958).
7.Tatsumisago, M., Kowada, Y., and Minami, T., Phys. Chem. Glasses 29 (1988) p. 63.
8.Suzuki, K. and Ueno, M., J. Phys. (Paris) C8 (1985) p. 261.
9.Hoppe, U., Walter, G., Stachel, D., and Hannon, A.C., Z. Naturforsch. 51A (1996) p. 179.
10.Uchino, T. and Ogata, Y., J. Non-Cryst. Solids 181 (1995) p. 175.
11.Hudgens, J.J., Brow, R.K., Tallant, D.R., and Martin, S.W., J. Non-Cryst. Solids 223 (1998) p. 21.
12.Hoppe, U., Walter, G., Stachel, D., Barz, A., and Hannon, A.C., Z. Naturforsch. 52A (1997) p. 259.
13.Kirkpatrick, R.J. and Brow, R.K., Solid State Nucl. Magn. Reson. 5 (1995) p. 9.
14.Brow, R.K., Tallant, D.R., Myers, S.T., and Phifer, C.C., J. Non-Cryst. Solids 191 (1995) p. 45.
15.Brow, R.K., Tallant, D.R., Hudgens, J.J., Martin, S.W., and Irwin, A.D., J. Non-Cryst. Solids 177 (1994) p. 221.
16.Gresch, R., Müller-Warmuth, W., and Dutz, H., J. Non-Cryst. Solids 34 (1979) p. 127.
17.Sales, B.C., Ramsey, R.S., Bates, J.B., and Boatner, L.A., J. Non-Cryst. Solids 87 (1986) p. 137.
18.Meadowcraft, T.R. and Richardson, F.D., Trans. Faraday Society 61 (1965) p. 54.
19.Born, R., Feike, M., Jäger, C., and Spiess, H.W., Z. Naturforsch. 50A (1995) p. 169.
20.Alam, T.M. and Brow, R.K., J. Non-Cryst. Solids 223 (1998) p. 1.
21.Feike, M., Jäger, C., and Spiess, H.W., J. Non-Cryst. Solids 223 (1998) p. 200.
22.Walter, G., Hoppe, U., Baade, T., Kranold, R., and Stachel, D., J. Non-Cryst. Solids 217 (1997) p. 299.
23.Hoppe, U., J. Non-Cryst. Solids 195 (1996) p. 138.
24.Frydman, L. and Harwood, J.S., J. Am. Chem. Soc. 117 (1995) p. 5367.
25.Koller, H., Englehardt, G., Kentgens, A.P.M., and Sauer, J., J. Phys. Chem. 98 (1994) p. 1544.
26.Bunker, B.C., Arnold, G.W., and Wilder, J.A., J. Non-Cryst. Solids 64 (1984) p. 291.
27.Peng, Y.B. and Day, D.E., Glsss Technol. 32 (1991) p. 166.
28.Brow, R.K., J. Am. Ceram. Soc. 76 (1993) p. 913.
29.Brow, R.K., Kirkpatrick, R.J., and Turner, G.L., J. Am. Ceram. Soc. p. 919.
30.Brow, R.K. and Tallant, D.R., J. Non-Cryst. Solids 222 (1997) p. 396.
31.Brow, R.K. and Kovacic, L., U.S. Patent No. 5,262,364 (November 16, 1993).
32.Weyl, W.A. and Marboe, E.C., The Constitution of Glasses (Interscience, New York, 1964) p. 578.
33.Quinn, C.J., Bell, G.H., and Dickinson, J.E., in Proc. XVI Int. Congress on Glass, vol. 4 (Spanish Ceramic and Glass Society, 1992) p. 79.
34.Efimov, A.M., J. Non-Cryst. Solids 209 (1997) p. 209.
35.Dickinson, J.E., Chimica Chronica 23 (1994) p. 355.
36.Otaigbe, J.U. and Beali, G.H., Trends Polym. Sci. 5 (1997) p. 369.
37.Aitken, B.G., Bookbinder, D.C., Greene, M.E., and Morena, R.M., U.S. Patent No. 5,246,890 (September 21, 1993).
38.Tick, P.A., Phys. Chem. Glasses 25 (1984) p. 149.
39.Brow, R.K., Phifer, C.C., Xu, X.J., and Day, D.E., Phys. Chem. Glasses 33 (1992) p. 33.
40.Tick, P.A. and Hall, D.W., Diff. Defect Data 53–54 (1987) p. 179.
41.Day, D.E., Wu, Z., and CRay, S., Final Technical Report, Pacific Northwest National Laboratories, Contract No. 276822-A-F1 (1995).
42.Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Shumsky, M.G., Yelon, W.B., Booth, C.H., Allen, P.G., and Shuh, D.K., J. Non-Cryst. Solids 222 (1997) p. 144.
43.Fernandez, C., Delevoye, L., Amourex, J-P., Lang, D.P., and Pruski, M., J. Am. Chem. Soc. 119 (1997) p. 6858.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed