Skip to main content Accessibility help

Simulations of Nanometer-Thick Lubricating Films

  • Mark O. Robbins, Peter A. Thompson and Gary S. Grest


Hydrodynamics and elastohydrodynamics have been successful in describing lubrication by micron-thick films. However, these continuum theories begin to break down as film thicknesses become comparable to molecular dimensions. An increasing number of applications require an understanding of lubricants in such severely confined geometries. Examples include lubrication of nanoscale bearings in micromachinery or high-density magnetic disk drives, as well as asperity interactions in macroscopic bearings that operate in the mixed lubrication regime.

Development of new experimental and theoretical techniques for studying thin lubricant films has paralleled the growing interest in their properties. The surface force apparatus (SFA) allows normal and shear forces to be measured between atomically flat solid surfaces while their separation is determined to within 0.1 nm using interferometry or capacitance. The contact area in the SFA is typically 100 μm across, much larger than the separation between solid walls. The atomic force microscope (AFM) can be used to explore friction in lubricated contacts whose diameter is comparable to the separation (5 nm). This allows spatial resolution of the frictional force on a molecular scale. Quartz-crystal oscillators have been used to determine the frictional forces between a surface and an adsorbed film of one or more monolayers. Theoretical advances have been aided by the advent of supercomputers that allow thin films to be simulated at the molecular level using molecular dynamics. These new experimental and theoretical techniques reveal a sequence of dramatic changes in the static and dynamic properties of fluid films as their thickness approaches molecular scales.



Hide All
1. See for example, Dowson, D. and Higginson, G.R., Elastohydrodynamic Lubrication (Pergamon Press, Oxford, 1966).
2.Horn, R.G. and Israelachvili, J.N., J. Chem. Phys. 75 (1981) p. 1400; R.G. Horn, S.J. Hirz, G. Hadziioannou, C.W Frank, and J.M. Catala, J. Chem. Phys. 90 (1989) p. 6767.
3.Israelachvili, J.N., J. Colloid Interface Sci. 110 (1986) p. 263.
4.Israelachvili, J.N., McGuiggan, P.M., and Homola, A.M., Science 240 (1988) p. 189.
5.Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., and Homola, A.M., J. Chem. Phys. 93 (1990) p. 1895.
6.Israelachvili, J.N., Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1991).
7.Van Alsten, J. and Granick, S., Phys. Rev. Lett. 61 (1988) p. 2570.
8.Van Alsten, J. and Granick, S., Macromolccules 23 (1990) p. 4856.
9.Hu, H-W., Carson, G.A., and Granick, S., Phys. Rev. Lett. 66 (1991) p. 2758; S. Granick, Science 253 (1992) p. 1374.
10.Georges, J.M., Millot, S., Loubet, J.M., Touck, A., and Mazuyer, D., in Thin Films in Tribology, edited by Dowson, D., Taylor, C.M., and Godet, M. (Elsevier, New York, 1993).
11.Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p. 1942.
12.Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H-J., Phys. Rev. Lett. 69 (1992) p. 1777.
13.Watts, E., Krim, J., and Widom, A., Phys. Rev. B 41 (1990) p. 3466.
14.Thompson, P.A., Brinckerhoff, W.B., and Robbins, M.O., J. Adhesion Sci. Technol., in press.
15.Thompson, P.A. and Robbins, M.O., Phys. Rev. A 41 (1990) p. 6830.
16.Thompson, P.A. and Robbins, M.O., Science 250 (1990) p. 792.
17.Robbins, M.O. and Thompson, P.A., Science 253 (1991) p. 916.
18.Thompson, P.A., Grest, G.S., and Robbins, M.O., Phys. Rev. Lett. 68 (1992) p. 3448.
19.Magda, J., Tirrell, M., and Davis, H.T., J. Chem. Phys. 83 (1985) 1888.
20.Schöen, M., Cushman, J., Diestler, D., and Rhykerd, C., J. Chem. Phys. 88 (1988) p. 1394.
21.Schöen, M., Rhykerd, C.L., Diestler, D., and Cushman, J.H., Science 245 (1989) p. 1223.
22.Heinbuch, U. and Fischer, J., Phys. Rev. A 40 (1989) p. 1144.
23.Landman, U., Luedtke, W.D., and Ribarsky, M.W., J. Vac. Sci. Technol. A 7 (1989) p. 2829.
24.Ribarsky, M.W. and Landman, U., J. Chem. Phys. 97 (1992) p. 1937.
25.Lupowski, M. and van Swol, F., J. Chem. Phys. 95 (1991) p. 1995.
26.Rabinowicz, E., Friction and Wear of Materials (Wiley and Sons, New York, 1965).
27.Allen, M.P and Tildesley, D.J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
28.Kremer, K. and Grest, G.S., J. Chem. Phys. 92 (1990) p. 5057.
29.Toxvaerd, S., J. Chem. Phys. 74 (1981) p. 1998.
30.Bitsanis, I. and Hadziioannou, G., J. Chem. Phys. 92 (1990) p. 3827.
31.Stevens, M.J. and Robbins, M.O., J. Chem. Phys. 98 (1993) p. 2319.
32.Chan, D.Y.C. and Horn, R.G., J. Chem. Phys. 83 (1985) p. 5311.
33.Grest, G.S. and Cohen, M.H., Advances in Chemical Physics, Vol. 48, edited by Prigogine, E. and Rice, S.A. (Wiley and Sons, New York, 1981) p. 455.
34.Stevens, M.J., Robbins, M.O., and Belak, J.F, Phys. Rev. Lett. 66 (1991) p. 3004; B.J. Ackerson and N.A. Clark, Phys. Rev. Lett. 46 (1981) p. 123.
35.Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids (Oxford University Press, Oxford, 1958).
36.Thompson, P.A., Grest, G.S., and Robbins, M.O., to be published.
37.Thompson, P.A. and Grest, G.S., Phys. Rev. Lett. 67 (1991) p. 1751.
38.Yoshizawa, H., McGuiggan, P.M., and Israelachvili, J.N., Science 259 (1993) p. 1305.

Simulations of Nanometer-Thick Lubricating Films

  • Mark O. Robbins, Peter A. Thompson and Gary S. Grest


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed