Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-15T01:56:27.336Z Has data issue: false hasContentIssue false

Shape-controlled metal nanocrystals for catalytic applications

Published online by Cambridge University Press:  14 August 2014

Aleksey Ruditskiy
Affiliation:
Georgia Institute of Technology, USA; aruditskiy3@gatech.edu
Sang-Il Choi
Affiliation:
Georgia Institute of Technology, USA; sangil.choi@bme.gatech.edu
Hsin-Chieh Peng
Affiliation:
Georgia Institute of Technology, USA; hcpeng@gatech.edu
Younan Xia
Affiliation:
Georgia Institute of Technology, USA; younan.xia@bme.gatech.edu
Get access

Abstract

The implication of shape control in nanocrystal synthesis goes far beyond aesthetic appeal. For metal nanocrystals, the shape not only determines their physicochemical properties but also their technological relevance for catalytic, plasmonic, photonic, and electronic applications. In particular, heterogeneous catalysis is a field that can benefit tremendously from the availability of metal nanocrystals with well-controlled shapes, which may serve to significantly increase reaction efficiency while decreasing material cost. This article provides a brief overview of our recent progress in generating shape-controlled nanocrystals with enhanced catalytic activity toward oxygen reduction and formic acid oxidation, two reactions that are crucial for the successful commercialization of fuel cell technology. The impact on other industrially important reactions will be discussed as well. We hope that this article provides a roadmap for further development of metal nanocrystal-based catalysts with enhanced performance through shape-controlled synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ertl, G., Knozinger, H., Weitkamp, J., Handbook of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997).CrossRefGoogle Scholar
Balaj, O., Balteanu, I., Rossteuscher, T., Beyer, M., Bondybey, V., Angew. Chem. Int. Ed. 43, 6519 (2004).CrossRefGoogle Scholar
Somorjai, G.A., Kliewer, C.J., React. Kinet. Catal. Lett. 96, 191 (2009).CrossRefGoogle Scholar
Falicov, L.M., Somorjai, G.A., Proc. Natl. Acad. Sci. U.S.A. 82, 2207 (1985).CrossRefGoogle Scholar
Sander, M., Imbihl, R., Schuster, R., Barth, J.V., Ertl, G., Surf. Sci. 272, 159 (1992).CrossRefGoogle Scholar
Zhou, K., Li, Y., Angew. Chem. Int. Ed. 51, 602 (2012).CrossRefGoogle Scholar
Xia, Y., Xiong, Y., Kim, B., Skrabalak, S.E., Angew. Chem. Int. Ed. 48, 60 (2009).CrossRefGoogle Scholar
Wang, Z.L., J. Phys. Chem. B 104, 1153 (2000).CrossRefGoogle Scholar
Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., Chem. Rev. 105, 1025 (2005).CrossRefGoogle Scholar
Bratlie, K.M., Kilewer, C.J., Somorjai, G.A., J. Phys. Chem. B 110, 17925 (2006).CrossRefGoogle Scholar
Spencer, N.D., Schoonmaker, R.C., Somorjai, G.A., J. Catal. 74, 129 (1982).CrossRefGoogle Scholar
Zhang, H., Jin, M., Xia, Y., Angew. Chem. Int. Ed. 51, 7656 (2012).CrossRefGoogle Scholar
Xia, Y., Xia, X., Wang, Y., Xie, S., MRS Bull. 38, 335 (2013).CrossRefGoogle Scholar
Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z.Y., Zhang, Q., Zhu, Y., Xia, Y, J. Am. Chem. Soc. 132, 8552 (2010).CrossRefGoogle Scholar
Sun, Y., Mayers, B., Herricks, T., Xia, Y., Nano Lett. 3, 955 (2003).CrossRefGoogle Scholar
Zheng, Y., Zeng, J., Ruditskiy, A., Liu, M., Xia, Y., Chem. Mater. 26, 22 (2014).CrossRefGoogle Scholar
Wiley, B.J., Xiong, Y., Li, Z.Y., Yin, Y., Xia, Y., Nano Lett. 6, 765 (2006).CrossRefGoogle Scholar
Hwang, H., Wang, Y., Ruditskiy, A., Zhao, X., Zhang, L., Liu, J., Ye, Z., Xia, Y., J. Am. Chem. Soc., in press (2014).Google Scholar
Zhu, C., Zeng, J., Lu, P., Liu, J., Gu, Z., Xia, Y., Chem. Eur. J. 19, 5127 (2013).CrossRefGoogle Scholar
Peng, H.C., Xie, S., Park, J., Xia, X., Xia, Y., J. Am. Chem. Soc. 135, 3780 (2013).CrossRefGoogle Scholar
Xia, X., Xie, S., Liu, M., Peng, H.C., Lu, N., Wang, J., Kim, M.J., Xia, Y., Proc. Natl. Acad. Sci. U.S.A. 110, 6669 (2013).CrossRefGoogle Scholar
Xia, X., Wang, Y., Ruditskiy, A., Xia, Y., Adv. Mater. 25, 6313 (2013).CrossRefGoogle Scholar
Liu, M., Zheng, Y., Zheng, L., Guo, L., Xia, Y., J. Am. Chem. Soc. 135, 11752 (2013).CrossRefGoogle Scholar
Xie, S., Lu, N., Xie, Z., Wang, J., Kim, M.J., Xia, Y., Angew. Chem. Int. Ed. 51, 10266 (2012).CrossRefGoogle Scholar
Lu, N., Wang, J., Xie, S., Xia, Y., Kim, M.J., Chem. Comm. 49, 11806 (2013).CrossRefGoogle Scholar
Gasteiger, H., Kocha, S., Sampalli, B., Wagner, F., Appl. Catal. 56, 9 (2005).CrossRefGoogle Scholar
Chen, J., Lim, B., Lee, E.P., Xia, Y., Nano Today 4, 81 (2009).CrossRefGoogle Scholar
de Bruijin, F, Dam, V., Janssen, G., Fuel Cells 8, 3 (2008).CrossRefGoogle Scholar
Zhang, J., Vukmirovic, M.B., Xu, Y., Mavrikakis, M., Adzic, R.R., Angew. Chem. Int. Ed. 44, 2132 (2005).CrossRefGoogle Scholar
Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., Xia, Y., Science 324, 1302 (2009).CrossRefGoogle Scholar
Lim, B., Kobayashi, H., Camargo, P.H.C., Allard, L.F., Liu, J., Xia, Y., Nano Res. 3, 180 (2010).CrossRefGoogle Scholar
Shao, M., He, G., Peles, A, Odell, J.H., Zeng, J., Su, D., Tao, J., Yu, T., Zhu, Y., Xia, Y., Chem. Commun. 49, 9030 (2013).CrossRefGoogle Scholar
Shao, M., Yu, T., Odell, J.H., Jin, M., Xia, Y., Chem. Commun. 47, 6566 (2011).CrossRefGoogle Scholar
Zhang, H., Jin, M., Wang, J., Li, W., Camargo, P.H.C., Kim, M.J., Yang, D., Xie, Z., Xia, Y., J. Am. Chem. Soc. 133, 6078 (2011).CrossRefGoogle Scholar
Yu, T., Kim, D.Y., Zhang, H., Xia, Y., Angew. Chem. Int. Ed. 50, 2773 (2011).CrossRefGoogle Scholar
Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Markovic, N.M., Science 315, 493 (2007).CrossRefGoogle Scholar
Zhang, J., Yang, H., Fang, J., Zou, S., Nano Lett. 10, 638 (2010).CrossRefGoogle Scholar
Wu, J., Gross, A., Yang, H., Nano Lett. 11, 798 (2011).CrossRefGoogle Scholar
Cui, C., Gan, L., Li, H.H., Yu, S.H., Heggen, M., Strasser, P., Nano Lett. 12, 5885 (2012).CrossRefGoogle Scholar
Wu, Y., Cai, S., Wang, D., He, W., Li, Y., J. Am. Chem. Soc. 134, 8975 (2012).CrossRefGoogle Scholar
Choi, S.I., Xie, S., Shao, M., Odell, J.H., Lu, N., Peng, H.C., Protsailo, L., Guerrero, S., Park, J., Xia, X., Wang, J., Kim, M.J., Xia, Y., Nano Lett. 13, 3420 (2013).CrossRefGoogle Scholar
Zhang, H., Jin, M., Liu, H., Wang, J., Kim, M.J., Yang, D., Xie, Z., Liu, J., Xia, Y., ACS Nano 5, 8212 (2011).CrossRefGoogle Scholar
Yu, X., Pickup, P.G., J. Power Sources 182, 124 (2008).CrossRefGoogle Scholar
Zhang, H., Wang, C., Wang, J., Zhai, J.. Cai, W., J. Phys. Chem. C 114, 6446 (2010).CrossRefGoogle Scholar
Shao, M., Odell, J., Humbert, M., Yu, T., Xia, Y., J. Phys. Chem. C 117, 4172 (2013).CrossRefGoogle Scholar
Jin, M., Zhang, H., Xie, Z., Xia, Y., Energy Environ. Sci. 5, 6352 (2012).CrossRefGoogle Scholar
Jin, M., Zhang, H., Xie, Z., Xia, Y., Angew. Chem. Int. Ed. 50, 7850 (2011).CrossRefGoogle Scholar
Lv, T., Wang, Y., Choi, S.I., Chi, M., Tao, J., Pan, L., Huang, C.Z., Zhu, Y., Xia, Y., ChemSusChem 6, 1923 (2013).CrossRefGoogle Scholar
Xia, X., Choi, S.I., Herron, J.A., Lu, N., Scaranto, J., Peng, H.C., Wang, J., Mavrikakis, M., Kim, M.J., Xia, Y., J. Am. Chem. Soc. 135, 15706 (2013).CrossRefGoogle Scholar
Crespo-Quesada, M., Yarulin, A., Jin, M., Xia, Y., Kiwi-Minsker, L., J. Am. Chem. Soc. 133, 12787 (2011).CrossRefGoogle Scholar
Xie, S., Choi, S.I., Xia, X., Xia, Y., Curr. Opin. Chem. Eng. 2, 142 (2013).CrossRefGoogle Scholar
Crespo-Quesada, M., Andanson, J.M., Yarulin, A., Lim, B., Xia, Y., Kiwi-Minsker, L., Langmuir 27, 7909 (2011).CrossRefGoogle Scholar
Cobley, C.M., Campbell, D.J., Xia, Y., Adv. Mater. 20, 748 (2008).CrossRefGoogle Scholar
An, K., Somorjai, G.A., ChemCatChem 4, 1512 (2012).CrossRefGoogle Scholar
Mostafa, S., Behafarid, F., Croy, J.R., Ono, L.K., Li, L., Yang, J.C., Frankel, A.I., Cuenya, B.R., J. Am. Chem. Soc. 132, 15714 (2010).CrossRefGoogle Scholar